1. |
Nannan Qin, Liguang Wu. Roles of Upper-Level Descending Inflow in Moat Development in Simulated Tropical Cyclones with Secondary Eyewall Formation. Advances in Atmospheric Sciences, 2024, 41(6): 1100.
DOI:10.1007/s00376-023-3075-9
|
2. |
Weihong Qian, Jun Du, Yang Ai, et al. Anomaly-Based Variable Models: Examples of Unusual Track and Extreme Precipitation of Tropical Cyclones. Meteorology, 2024, 3(2): 243.
DOI:10.3390/meteorology3020013
|
3. |
Albenis Pérez-Alarcón, Marta Vázquez, Ricardo M. Trigo, et al. Evaluation of WRF model configurations for dynamic downscaling of tropical cyclones activity over the North Atlantic basin for Lagrangian moisture tracking analysis in future climate. Atmospheric Research, 2024, 307: 107498.
DOI:10.1016/j.atmosres.2024.107498
|
4. |
Zihan Zhao, Yiqing Xiao, Chao Li, et al. Multiscale simulation of the urban wind environment under typhoon weather conditions. Building Simulation, 2023, 16(9): 1713.
DOI:10.1007/s12273-023-0991-7
|
5. |
Hui Wang, Yubin Yu, Hongxiong Xu, et al. A numerical study on the effects of a midlatitude upper-level trough on the track and intensity of Typhoon Bavi (2020). Frontiers in Earth Science, 2023, 10
DOI:10.3389/feart.2022.1056882
|
6. |
Jianing Feng, Yihong Duan, Xudong Liang, et al. QuickOSSE Research on the Impact of Airship-Borne Doppler Radar Radial Winds to Predict the Track and Intensity of a Tropical Cyclone. Remote Sensing, 2022, 15(1): 191.
DOI:10.3390/rs15010191
|
7. |
Xia Sun, Lian Xie. A Comparative Study on the Performances of Spectral Nudging and Scale-Selective Data Assimilation Techniques for Hurricane Track and Intensity Simulations. Climate, 2022, 10(11): 168.
DOI:10.3390/cli10110168
|
8. |
Xiaoning Wu, Kevin A. Reed, Patrick Callaghan, et al. Exploring Western North Pacific Tropical Cyclone Activity in the High‐Resolution Community Atmosphere Model. Earth and Space Science, 2022, 9(1)
DOI:10.1029/2021EA001862
|
9. |
Rui Wang, Yiting Zhu, Fengxue Qiao, et al. High-resolution Simulation of an Extreme Heavy Rainfall Event in Shanghai Using the Weather Research and Forecasting Model: Sensitivity to Planetary Boundary Layer Parameterization. Advances in Atmospheric Sciences, 2021, 38(1): 98.
DOI:10.1007/s00376-020-9255-y
|
10. |
Sho Arakane, Huang-Hsiung Hsu. A tropical cyclone removal technique based on potential vorticity inversion to better quantify tropical cyclone contribution to the background circulation. Climate Dynamics, 2020, 54(5-6): 3201.
DOI:10.1007/s00382-020-05165-x
|
11. |
Donglei Shi, Guanghua Chen, Ke Wang, et al. Evaluation of Two Initialization Schemes for Simulating the Rapid Intensification of Typhoon Lekima (2019). Advances in Atmospheric Sciences, 2020, 37(9): 987.
DOI:10.1007/s00376-020-2038-7
|
12. |
Meiying Dong, Chunxiao Ji, Feng Chen, et al. Numerical Study of Boundary Layer Structure and Rainfall after Landfall of Typhoon Fitow (2013): Sensitivity to Planetary Boundary Layer Parameterization. Advances in Atmospheric Sciences, 2019, 36(4): 431.
DOI:10.1007/s00376-018-7281-9
|
13. |
Chengwu Zhao, Junqiang Song, Hongze Leng, et al. Objective Center-Finding Algorithm for Tropical Cyclones in Numerical Models. Atmosphere, 2019, 10(7): 376.
DOI:10.3390/atmos10070376
|
14. |
Nannan Qin, Da-Lin Zhang. On the Extraordinary Intensification of Hurricane Patricia (2015). Part I: Numerical Experiments. Weather and Forecasting, 2018, 33(5): 1205.
DOI:10.1175/WAF-D-18-0045.1
|
15. |
Xinjian Yue, Aimei Shao, Xue Fang, et al. Incorporating a Large‐Scale Constraint Into Radar Data Assimilation to Mitigate the Effects of Large‐Scale Bias on the Analysis and Forecast of a Squall Line Over the Yangtze‐Huaihe River Basin. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8581.
DOI:10.1029/2018JD028362
|
16. |
Xinghai Zhang, Yihong Duan, Yuqing Wang, et al. A high-resolution simulation of Supertyphoon Rammasun (2014)—Part I: Model verification and surface energetics analysis. Advances in Atmospheric Sciences, 2017, 34(6): 757.
DOI:10.1007/s00376-017-6255-7
|
17. |
Xingliang Guo, Wei Zhong. The Use of a Spectral Nudging Technique to Determine the Impact of Environmental Factors on the Track of Typhoon Megi (2010). Atmosphere, 2017, 8(12): 257.
DOI:10.3390/atmos8120257
|
18. |
Wenqiang Shen, Jianping Tang, Yuan Wang, et al. Evaluation of WRF model simulations of tropical cyclones in the western North Pacific over the CORDEX East Asia domain. Climate Dynamics, 2017, 48(7-8): 2419.
DOI:10.1007/s00382-016-3213-5
|
19. |
B. Gómez, G. Miguez‐Macho. The impact of wave number selection and spin‐up time in spectral nudging. Quarterly Journal of the Royal Meteorological Society, 2017, 143(705): 1772.
DOI:10.1002/qj.3032
|
20. |
Suk-Jin Choi, Dong-Kyou Lee. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations. Advances in Atmospheric Sciences, 2016, 33(6): 730.
DOI:10.1007/s00376-016-5061-y
|
21. |
Yanfeng Zhao, Donghai Wang, Zhaoming Liang, et al. Improving numerical experiments on persistent severe rainfall events in southern China using spectral nudging and filtering schemes. Quarterly Journal of the Royal Meteorological Society, 2016, 142(701): 3115.
DOI:10.1002/qj.2892
|
22. |
Zhenshou Yu, Chunxiao Ji, Jing Xu, et al. Numerical simulation and analysis of the Yangtze River Delta Rainstorm on 8 October 2013 caused by binary typhoons. Atmospheric Research, 2015, 166: 33.
DOI:10.1016/j.atmosres.2015.06.014
|
23. |
Yuan Sun, Zhong Zhong, Wei Lu. Sensitivity of Tropical Cyclone Feedback on the Intensity of the Western Pacific Subtropical High to Microphysics Schemes. Journal of the Atmospheric Sciences, 2015, 72(4): 1346.
DOI:10.1175/JAS-D-14-0051.1
|