Loading [MathJax]/jax/output/SVG/jax.js

Effects of Soil Hydraulic Properties on Soil Moisture Estimation

土壤水力属性对土壤湿度估算的影响

+ Author Affiliations + Find other works by these authors
Funds: 
Supported by the National Natural Science Foundation of China (52109036, 51709046, 51539003, 41761134090, 41830752, and 42071033), Belt and Road Special Foundation of the State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering of Hohai University (2021490611), Open Foundation of Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources (HYMED202203, HYMED202210), and Lanzhou Institute of Arid Meteorology (IAM202119). Data are provided by the National Tibetan Plateau Data Center of China

PDF

  • Accurate quantification of soil moisture is essential to understand the land surface processes. Soil hydraulic properties influence water transport in soil and thus affect the estimation of soil moisture. However, some soil hydraulic properties are only observable at a few field sites. In this study, the effects of soil hydraulic properties on soil moisture estimation are investigated by using the one-dimensional (1-D) Richards equation at ELBARA, which is part of the Maqu monitoring network over the Tibetan Plateau (TP), China. Soil moisture assimilation experiments are then conducted with the unscented weighted ensemble Kalman filter (UWEnKF). The results show that the soil hydraulic properties significantly affect soil moisture simulation. Saturated soil hydraulic conductivity (Ksat) is optimized based on its observations in each soil layer with a genetic algorithm (GA, a widely used optimization method in hydrology), and the 1-D Richards equation performs well using the optimized values. If the range of Ksat for a complete soil profile is known for a particular soil texture (rather than for arbitrary layers within the horizon), optimized Ksat for each soil layer can be obtained by increasing the number of generations in GA, although this increases the computational cost of optimization. UWEnKF performs well with optimized Ksat, and improves the accuracy of soil moisture simulation more than that with calculated Ksat. Sometimes, better soil moisture estimation can be obtained by using opti-mized saturated volumetric soil moisture content Ksat. In summary, an accurate soil profile can be obtained by using soil moisture assimilation with optimized soil hydraulic properties.
    土壤湿度(SM)的精确量化对理解陆面过程至关重要。然而,影响SM估算的一些土壤水力属性(SHP)的观测,仅限于有限的实验站点。为评估SHP对SM的影响,本文在青藏高原玛曲观测网的ELBARA站点开展了基于一维理查德方程的SM模拟结果对SHP观测值的敏感性研究,然后利用无迹加权集合卡尔曼滤波(UWEnKF)同化方法进行SM估算并探讨估算结果的相关敏感性。结果表明,SHP显著影响SM的模拟结果。当利用遗传算法对饱和水力传导度在每层观测范围内进行优化后,SM的模拟结果得到提高。另外,仅仅知道某个土壤类型的变化范围时,可以增加遗传迭代次数获取的优化值。基于优化后的,利用UWEnKF可以显著提高SM的估算精度。利用优化后的饱和土壤含水量也可能获得较好的SM估算值。本文揭示通过同化方法叠加参数优化可以提高SM的估算精度,为获取不同时空尺度高精度的SM奠定基础。
  • Fig.  14.   Soil moisture assimilation using optimized θsat and optimized Ksat with an assimilation interval 12 ∆t.

    Fig.  1.   ELBARA experimental site at the Maqu monitoring network in SRYR (Fu et al., 2022).

    Fig.  2.   Schematic diagram for numerical scheme (Lawrence et al., 2018; Fu et al., 2022).

    Fig.  3.   Variations of soil moisture simulations and observations in different depths. The gray shaded area (Simulation range) shows the range of an open loop with observed values of θsat varied; the purple shaded area (Simulation-cal range) shows the range of an open loop with calculated values of θsat varied using Eq. (5); the purple area appears to be a line, because the range of calculated θsat is small, which leads to a small difference in soil moisture simulations for different calculated θsat; θsat-min and θsat-max are the soil moisture simulations for the smallest and largest observed values of θsat.

    Fig.  4.   RMSE between the soil moisture simulation and observation with different values of θsat. The left column shows RMSE with observed θsat varied; the right column shows RMSE with calculated θsat in Eq. (5), and RMSE seems a constant because of the small change in calculated θsat.

    Fig.  5.   As in Fig. 3, but for Ksat.

    Fig.  6.   RMSE between soil moisture simulation and observation for various Ksat. The left column shows RMSE for varied observed Ksat; the right column shows RMSE for varied calculated Ksat in Eq. (4).

    Fig.  7.   Variations of soil moisture simulations and observations. The gray shaded area (simulation-cal range) shows the range of an open loop with various calculated values of ψsat in the left column of Eq. (7) and various calculated values of B in the right column of Eq. (6).

    Fig.  8.   Optimized Ksat with different ranges depending on the values for four soil interfaces (Table 1): Ksat ∈ (1.14 × 10−3, 8.53 × 10−3) mm s−1 for interface 1, Ksat ∈ (7.44 × 10−4, 6.27 × 10−3) mm s−1 for interface 2, Ksat ∈ (1.57 × 10−4, 7.33 × 10−4) mm s−1 for interface 3, and Ksat ∈ (2.67 × 10−4, 2.63 × 10−2) mm s−1 for interface 4.

    Fig.  9.   Soil moisture assimilation using optimized Ksat (left column; a1–a4) and calculated Ksat (right column; b1–b4) with an assimilation interval 12 ∆t.

    Fig.  10.   Soil moisture assimilation using optimized Ksat (left column; a1–a4) and calculated Ksat; (right column; b1–b4) with 24 ∆t assimilation interval.

    Fig.  11.   Optimized Ksat for the same range 1.57 × 10−4 to 2.63 × 10−2 mm s−1 at the four interfaces between two adjacent soil layers, i.e., Ksat ∈ (1.57 × 10−4, 2.63 × 10−2) mm s−1 for interfaces 1 to 4.

    Fig.  12.   Optimized θsat with the range 0.37 to 0.85 m3 m−3 by GA for four soil layers.

    Fig.  13.   Soil moisture assimilation using optimized θsat with assimilation interval 12 ∆t.

    Table  1   Profiles of basic soil properties at Maqu

    Depth (cm)Sand (%)Clay (%)Silt (%)Bulk density
    (g cm−3)
    Porosity
    (m3 m−3)
    Ksat (mm s−1)
    minmeanmaxminmeanmaxminmeanmaxminmeanmaxminmeanmaxminmeanmax
    514.4526.9541.378.66 9.8611.0349.7063.1975.020.390.761.060.600.730.85
    1014.4429.0347.598.40 9.9511.2544.0161.0274.310.530.951.210.570.660.801.14 × 10−33.87 × 10−38.53 × 10−3
    2017.0029.2045.349.4210.1510.9044.3060.6572.810.861.231.490.510.590.697.44 × 10−43.85 × 10−36.27 × 10−3
    4017.8131.6053.119.0110.4311.5537.8857.9770.861.191.401.550.370.510.621.57 × 10−43.64 × 10−47.33 × 10−4
    8019.0634.8363.315.47 9.3513.8731.2255.8269.461.151.491.710.410.470.602.67 × 10−48.76 × 10−32.63 × 10−2
    Note: Sand, silt, and clay are the standard particle size classes of the United States Department of Agriculture (USDA), porosity is saturated volumetric soil moisture content.
    Download: Download as CSV

    Table  2   The ranges of soil hydraulic parameters calculated using Eqs. (4)–(7)

    Depth (cm)θsat (m3 m−3)Ksat (mm s−1)ψsat (mm)B
    minmaxminmaxminmaxminmax
    50.48850.48887.97 × 10−48.05 × 10−4−755.28−749.172.92382.9275
    100.48840.48886.86 × 10−46.94 × 10−4−755.28−747.772.92342.9279
    200.48840.48885.09 × 10−45.14 × 10−4−754.70−748.272.92502.9273
    400.48830.48882.79 × 10−42.83 × 10−4−754.51−746.522.92432.9284
    800.48820.48881.26 × 10−41.28 × 10−4−754.23−744.232.91872.9321
    Note: “↓” is the saturated hydraulic conductivity at the downward interface of two adjacent layers.
    Download: Download as CSV

    Table  3   RMSE and SS for simulation and assimilation using GA-optimized Ksat and calculated Ksat with an assimilation interval 12 ∆t

    Depth (cm)Optimized KsatCalculated (without optimization) Ksat
    RMSE (m3 m−3)AE (m3 m−3)SSRMSE (m3 m−3)AE (m3 m−3)SS
    SimulationAssimilationSimulationAssimilation
    50.02810.02150.00660.41200.04830.04260.00570.2244
    200.02320.01480.00840.59110.03960.03200.00760.3469
    500.02610.01610.01000.61780.03260.02160.01100.5615
    800.03940.02600.01340.56420.05220.04230.00990.3425
    Note: “AE” is the absolute error between RMSE for simulation and RMSE for assimilation; calculated Ksat is obtained using Eq. (4) according to the observed mean values of basic soil properties (Table 1).
    Download: Download as CSV

    Table  4   RMSE and SS for simulation and assimilation using GA-optimized θsat and Ksat with assimilation interval 12 ∆t

    Depth (cm)Optimized θsatOptimized θsat and Ksat
    RMSE (m3 m−3)SSRMSE (m3 m−3)SS
    SimulationAssimilationSimulationAssimilation
    50.02730.02470.18390.01410.01340.0914
    200.01920.01500.38650.01030.00920.2074
    500.01640.00950.66520.01080.00830.4144
    800.03580.02780.39610.02250.01620.4799
    Download: Download as CSV
  • Allen, R. G., 2000: Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol., 229, 27–41. doi: 10.1016/S0022-1694(99)00194-8
    Arifovic, J., 1994: Genetic algorithm learning and the cobweb model. J. Econom. Dyn. Control., 18, 3–28. doi: 10.1016/0165-1889(94)90067-1
    Assouline, S., and J. Selker, 2017: Introduction and evaluation of a Weibull hydraulic conductivity-pressure head relationship for unsaturated soils. Water Resour. Res., 53, 4956–4964. doi: 10.1002/2017WR020796
    Bies, R. R., M. F. Muldoon, B. G. Pollock, et al., 2006: A genetic algorithm-based, hybrid machine learning approach to model selection. J. Pharmacokinet. Pharmacodyn., 33, 195–221. doi: 10.1007/s10928-006-9004-6
    Brandhorst, N., D. Erdal, and I. Neuweiler, 2017: Soil moisture prediction with the ensemble Kalman filter: Handling uncertainty of soil hydraulic parameters. Adv. Water Resour., 110, 360–370. doi: 10.1016/j.advwatres.2017.10.022
    Chen, J. L., J. Wen, H. Tian, et al., 2018: A study of soil thermal and hydraulic properties and parameterizations for CLM in the SRYR. J. Geophys. Res. Atmos., 123, 8487–8499. doi: 10.1029/2017JD028034
    Chirico, G. B., H. Medina, and N. Romano, 2014: Kalman filters for assimilating near-surface observations into the Richards equation–Part 1: Retrieving state profiles with linear and nonlinear numerical schemes. Hydrol. Earth Syst. Sci., 18, 2503–2520. doi: 10.5194/hess-18-2503-2014
    Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601–604. doi: 10.1029/WR014i004p00601
    Deng, Y. H., S. J. Wang, X. Y. Bai, et al., 2020: Comparison of soil moisture products from microwave remote sensing, land model, and reanalysis using global ground observations. Hydrol. Process., 34, 836–851. doi: 10.1002/hyp.13636
    Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. No. NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, doi: 10.5065/D67W6959.
    Dong, J. Z., S. C. Steele-Dunne, J. Judge, et al., 2015: A particle batch smoother for soil moisture estimation using soil temperature observations. Adv. Water Resour., 83, 111–122. doi: 10.1016/j.advwatres.2015.05.017
    Dong, J. Z., S. C. Steele-Dunne, T. E. Ochsner, et al., 2016: Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures. Water Resour. Res., 52, 4280–4300. doi: 10.1002/2015wr018425
    Famiglietti, J. S., and E. F. Wood, 1994: Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res., 30, 3061–3078. doi: 10.1029/94WR01498
    Fu, X. L., Z. B. Yu, L. F. Luo, et al., 2014: Investigating soil moisture sensitivity to precipitation and evapotranspiration errors using SiB2 model and ensemble Kalman filter. Stoch. Environ. Res. Risk Assess., 28, 681–693. doi: 10.1007/s00477-013-0781-3
    Fu, X. L., L. F. Luo, M. Pan, et al., 2018: Evaluation of TOPMODEL-based land surface-atmosphere transfer scheme (TOPLATS) through a soil moisture simulation. Earth Interact., 22, 1–19. doi: 10.1175/EI-D-17-0037.1
    Fu, X. L., Z. B. Yu, Y. Tang, et al., 2019: Evaluating soil moisture predictions based on ensemble Kalman filter and SiB2 model. J. Meteor. Res., 33, 190–205. doi: 10.1007/s13351-019-8138-6
    Fu, X. L., Z. B. Yu, Y. J. Ding, et al., 2020: Unscented weighted ensemble Kalman filter for soil moisture assimilation. J. Hydrol., 580, 124352. doi: 10.1016/j.jhydrol.2019.124352
    Fu, X. L., X. L. Jiang, Z. B. Yu, et al., 2022: Understanding the key factors that influence soil moisture estimation using the unscented weighted ensemble Kalman filter. Agric. Forest Meteor., 313, 108,745. doi: 10.1016/j.agrformet.2021.108745
    Gevaert, A. I., L. J. Renzullo, A. I. J. M. van Dijk, et al., 2018: Joint assimilation of soil moisture retrieved from multiple passive microwave frequencies increases robustness of soil moisture state estimation. Hydrol. Earth Syst. Sci., 22, 4605–4619. doi: 10.5194/hess-22-4605-2018
    Han, X. J., and X. Li, 2008: An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sens. Environ., 112, 1434–1449. doi: 10.1016/j.rse.2007.07.008
    Han, X. J., H. J. H. Franssen, C. Montzka, et al., 2014: Soil moisture and soil properties estimation in the Community Land Model with synthetic brightness temperature observations. Water Resour. Res., 50, 6081–6105. doi: 10.1002/2013WR014586
    Huang, C. L., W. J. Chen, Y. Li, et al., 2016: Assimilating multi-source data into land surface model to simultaneously improve estimations of soil moisture, soil temperature, and surface turbulent fluxes in irrigated fields. Agric. Forest Meteor., 230–231, 142–156, doi: 10.1016/j.agrformet.2016.03.013.
    Jia, D. Y., J. Wen, X. Wang, et al., 2019: Soil hydraulic conductivity and its influence on soil moisture simulations in the source region of the Yellow River—take Maqu as an example. Sci. Cold Arid Reg., 11, 360–370. doi: 10.3724/SP.J.1226.2019.00360
    Ju, F., R. An, and Y. X. Sun, 2019: Immune evolution particle filter for soil moisture data assimilation. Water, 11, 211. doi: 10.3390/w11020211
    Keefer, T. O., M. S. Moran, and G. B. Paige, 2008: Long-term meteorological and soil hydrology database, walnut gulch experimental watershed, Arizona, United States. Water Resour. Res., 44, W05S07. doi: 10.1029/2006WR005702
    Kolassa, J., R. H. Reichle, Q. Liu, et al., 2018: Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote Sens. Environ., 204, 43–59. doi: 10.1016/j.rse.2017.10.045
    Lawrence, D., R. Fisher, C. Koven, et al., 2018: Technical Description of version 5.0 of the Community Land Model (CLM). National Center for Atmospheric Research, Boulder. Available online at https://escomp.github.io/ctsm-docs/versions/release-clm5.0/html/users_guide/index.html. Accessed on 29 January 2023.
    Lyu, H. S., Z. B. Yu, Y. H. Zhu, et al., 2011: Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation. Adv. Water Resour., 34, 395–406. doi: 10.1016/j.advwatres.2010.12.005
    Murphy, A. H., 1996: General decompositions of MSE-based skill scores: Measures of some basic aspects of forecast quality. Mon. Wea. Rev., 124, 2353–2369. doi: 10.1175/1520-0493(1996)124<2353:gdombs>2.0.co;2
    Naz, B. S., S. Kollet, H. J. H. Franssen, et al., 2020: A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015. Sci. Data, 7, 111. doi: 10.1038/s41597-020-0450-6
    Oleson, K. W., Y. J. Dai, G. Bonan, et al., 2004: Technical Description of the Community Land Model (CLM). No. NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder. Available online at http://dx.doi.org/10.5065/D6N877R0. Accessed on 29 January 2023.
    Reichle, R. H., G. J. M. De Lannoy, Q. Liu, et al., 2017: Assessment of the SMAP Level-4 surface and root-zone soil moisture product using in situ measurements. J. Hydrometeor., 18, 2621–2645. doi: 10.1175/JHM-D-17-0063.1
    Richards, L. A., 1931: Capillary conduction of liquids through porous mediums. Physics, 1, 318–333. doi: 10.1063/1.1745010
    Sellers, P. J., D. A. Randall, G. J. Collatz, et al., 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. J. Climate, 9, 676–705. doi: 10.1175/1520-0442(1996)009<0676:arlspf>2.0.co;2
    Seo, E., M.-I. Lee, and R. H. Reichle, 2021: Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman filter. Remote Sens. Environ., 253, 112222. doi: 10.1016/j.rse.2020.112222
    Su, Z., J. Wen, Y. Zeng, et al., 2020: Multiyear in-situ L-band microwave radiometry of land surface processes on the Tibetan Plateau. Sci. Data, 7, 317. doi: 10.1038/s41597-020-00657-1
    Tangdamrongsub, N., S. C. Han, I. Y. Yeo, et al., 2020: Multivariate data assimilation of GRACE, SMOS, SMAP measurements for improved regional soil moisture and groundwater storage estimates. Adv. Water Resour., 135, 103477. doi: 10.1016/j.advwatres.2019.103477
    Vereecken, H., J. A. Huisman, H. Bogena, et al., 2008: On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res., 44, W00D06. doi: 10.1029/2008WR006829
    Weerts, A. H., and G. Y. H. El Serafy, 2006: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res., 42, W09403. doi: 10.1029/2005WR004093
    Xu, S. Q., Z. B. Yu, K. Zhang, et al., 2018: Simulating canopy conductance of the Haloxylon ammodendron shrubland in an arid inland river basin of northwest China. Agric. Forest Meteor., 249, 22–34. doi: 10.1016/j.agrformet.2017.11.015
    Yan, H. X., C. M. DeChant, and H. Moradkhani, 2015: Improving soil moisture profile prediction with the particle filter-Markov Chain Monte Carlo method. IEEE Trans. Geosci. Remote Sens., 53, 6134–6147. doi: 10.1109/TGRS.2015.2432067
    Yang, S. H., R. Li, T. H. Wu, et al., 2021: Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau. Geoderma, 401, 115330. doi: 10.1016/j.geoderma.2021.115330
    Yu, Z. B., T. N. Carlson, E. J. Barron, et al., 2001: On evaluating the spatial–temporal variation of soil moisture in the Susquehanna River Basin. Water Resour. Res., 37, 1313–1326. doi: 10.1029/2000WR900369
    Yu, Z. B., D. Liu, H. S. Lyu, et al., 2012: A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter. J. Hydrol., 475, 53–64. doi: 10.1016/j.jhydrol.2012.08.034
    Yu, Z. B., X. L. Fu, L. F. Luo, et al., 2014: One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter. Water Resour. Res., 50, 6950–6965. doi: 10.1002/2012WR013473
    Zhao, H., Y. J. Zeng, S. N. Lv, et al., 2018: Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau. Earth Syst. Sci. Data, 10, 1031–1061. doi: 10.5194/essd-10-1031-2018
    Zhao, L., Z.-L. Yang, and T. J. Hoar, 2016: Global soil moisture estimation by assimilating AMSR-E brightness temperatures in a coupled CLM4-RTM-DART system. J. Hydrometeor., 17, 2431–2454. doi: 10.1175/JHM-D-15-0218.1
    Zheng, D. H., X. Wang, R. van der Velde, et al., 2017: L-band microwave emission of soil freeze-thaw process in the Third Pole environment. IEEE Trans. Geosci. Remote Sens., 55, 5324–5338. doi: 10.1109/tgrs.2017.2705248
    Zohaib, M., H. Kim, and M. Choi, 2017: Evaluating the patterns of spatiotemporal trends of root zone soil moisture in major climate regions in East Asia. J. Geophys. Res. Atmos., 122, 7705–7722. doi: 10.1002/2016JD026379
  • Related Articles

  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. Lukas F. Meldau, Bailiang Li, Cheryl McKenna Neuman, et al. Constant stress layer characteristics in simulated stratified air flows: Implications for aeolian transport. Aeolian Research, 2023, 63-65: 100888. DOI:10.1016/j.aeolia.2023.100888
    2. Ping Yue, Qiang Zhang, Runyuan Wang, et al. Turbulence intensity and turbulent kinetic energy parameters over a heterogeneous terrain of Loess Plateau. Advances in Atmospheric Sciences, 2015, 32(9): 1291. DOI:10.1007/s00376-015-4258-9
    3. Qiang Zhang, Tong Yao, Ping Yue. Development and test of a multifactorial parameterization scheme of land surface aerodynamic roughness length for flat land surfaces with short vegetation. Science China Earth Sciences, 2015. DOI:10.1007/s11430-015-5137-z

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return