Impact of Antecedent Soil Moisture Anomalies over the Indo-China Peninsula on the Super Meiyu Event in 2020

中南半岛前期土壤湿度异常对2020年超强梅雨的影响

+ Author Affiliations + Find other works by these authors
Funds: 
Supported by the National Key Research and Development Program of China (2022YFF0801603)

PDF

  • In the summer of 2020, a super Meiyu event occurred in the Yangtze River basin (YRB), causing enormous economic losses and human casualties. Recent studies have investigated the possible causes of this super Meiyu event from the perspective of anomalous atmospheric circulation activities and sea surface temperature (SST) anomalies; however, the influence of land surface processes has not garnered considerable attention. This study investigates the possible contributions of land surface processes to this extreme event based on observational analysis and numerical simulations, and shows that antecedent soil moisture (SM) anomalies over the Indo-China Peninsula (ICP) may have had a vital influence on the super Meiyu in 2020. Negative SM anomalies in May over the ICP increased the surface temperature and sensible heat flux. The “memory” of soil allowed the anomalies to persist into the Meiyu period. The heating of the lower atmosphere by the surface strengthened the western Pacific subtropical high, which caused an anomalous anticyclone from the ICP to Northwest Pacific and thus enhanced the southwesterly winds and vertical motion over the YRB. Consequently, the water vapor flux and convergence were strengthened. Sensitivity experiments based on the Weather Research and Forecasting (WRF) model further confirmed the results of observational analysis and indicated that the warm air heated by the ICP surface significantly warmed the lower troposphere from the ICP to Northwest Pacific under the influence of the background wind, thus increasing the geopotential height and inducing an anticyclone. The results of the sensitivity experiments showed that the SM anomalies in May over the ICP increased the precipitation by 10.6% from June to July over the YRB. These findings can improve our understanding of the mechanism of the super Meiyu event in 2020 and facilitate the prediction of extreme Meiyu events.
    2020年夏季江淮流域发生的超强梅雨造成了巨大的经济损失和人员伤亡。最新的研究从大气环流异常活动、海温异常等角度探究了此次超强梅雨发生的可能原因,但陆面过程的影响并未引起重视。基于观测分析和数值模拟,本文探讨了陆面过程的可能贡献。研究表明,5月中南半岛地区土壤湿度负异常使地表温度升高、感热通量增加,土壤的“记忆性”使这些异常持续到梅雨期。被地表加热的低层大气有利于西太副高西伸增强,中南半岛到西北太平洋上空出现异常反气旋,增强了长江中下游地区上空的西南风和垂直运动,进而使水汽输送和水汽辐合加强,最终造成梅雨期降水的显著增加。基于WRF模式的敏感性试验进一步证实了观测分析的结果,试验结果表明中南半岛5月土壤湿度异常能够引起6‒7月长江中下游地区降水量增加10.6%。研究结果有助于进一步理解2020年超强梅雨的形成机理,为极端梅雨的预测提供一定参考。
  • Fig.  4.   First SVD mode of heterogeneous maps between (a) the SM in May and (b) precipitation during June and July. The black dotted areas are significant at the 5% significance level. (c) The expansion coefficients of the first SVD mode. (d) Time series of the standardized regional average SM over the ICP (black box in Fig. 4a) based on the ERA-5 (black solid line), ESA-CCI (red dash dotted line), and GLDAS (blue dashed line) data. All data are linearly detrended and standardized for the period of 1991–2020 before SVD analysis.

    Fig.  1.   (a) Terrain height (m) over the WRF model domain. The red box denotes the ICP (10º–20ºN, 97º–110ºE), whose SM was prescribed in sensitivity experiments, and the blue box denotes the YRB region (28º–34ºN, 105º–122ºE). (b) The soil moisture (SM, black solid line; m3 m−3), surface temperature (SKT, red solid line; K), surface sensible heat flux (SH, blue solid line; W m−2), and surface latent heat flux (LH, blue dashed line; W m−2) averaged over the ICP obtained by subtracting CLIM from CTRL from 1 May to 31 July 2020.

    Fig.  2.   (a) Daily precipitation in 2020 (red bar; mm day−1; left y-axis), daily accumulated precipitation since 1 June 2020 (red line; mm; right y-axis), climatological daily precipitation (black dot; mm day−1; left y-axis), and climatological daily accumulated precipitation (black line; mm; right y-axis) over the YRB (black box in Fig. 2b). Gray lines indicate the annual daily accumulated precipitation in other years from 1991 to 2019 (mm; right y-axis) over the YRB. Spatial distributions averaged from 1 June to 31 July 2020 of (b) anomalies of precipitation (shaded; mm day−1), wind at 500 hPa (vector; m s−1), and geopotential height at 500 hPa (contour; gpm); (c) anomalies of vertical velocity (shaded; Pa s−1), wind (vector; m s−1), and geopotential height (contour; gpm) at 700 hPa; (d) anomalies of water vapor flux (vector; kg m−1 s−1) and convergence (shaded; 10−5 kg m−2 s−1) integrated from 1000 to 300 hPa; and (e) anomalies of temperature (shaded; K), wind (vector; m s−1), and geopotential height (contour; gpm) at 850 hPa.

    Fig.  3.   Anomalies of (a, e, i, m) soil moisture (SM, shaded; m3 m−3), (b, f, j, n) surface temperature (SKT, shaded; K), (c, g, k, o) surface sensible heat flux (SH, shaded; W m−2), and (d, h, l, p) surface latent heat flux (LH, shaded; W m−2) in May 2020 over the ICP, calculated from the (a–h) ERA-5 and (i–p) GLDAS data. The white dotted areas indicate anomaly values that are greater than the standard deviations.

    Fig.  5.   Regression of (a) wind (vector) and geopotential height (shaded) at 700 hPa and (b) water vapor convergence (shaded) and water vapor flux (vector) vertically integrated from 1000 to 300 hPa in June and July to the standardized SM index in May. The white dotted areas are significant at the 5% level. All data are linearly detrended and standardized before the regression analysis from 1991 to 2020.

    Fig.  6.   (a) Daily precipitation (shaded; mm day−1), 850-hPa geopotential height (red contour; gpm), and 500-hPa wind (vector; m s−1) in the (a, d) observation and (b, e) CTRL, and (c, f) their differences of reanalysis datasets. The gray solid lines represent the Tibetan Plateau region.

    Fig.  7.   (a) Soil moisture (SM, shaded; 10−2 m3 m−3), (b) surface temperature (SKT, shaded; K), (c) surface sensible heat flux (SH, shaded; W m−2), and (d) surface latent heat flux (LH, shaded; W m−2) in May 2020 over the ICP obtained by subtracting CLIM from CTRL. The black dotted areas are significant at the 5% level.

    Fig.  8.   (a) Daily precipitation (shaded; mm day−1), and 500-hPa wind (vector; m s−1) and geopotential height (red contour; gpm); (b) 700-hPa vertical velocity (shaded; Pa s−1), wind (vector; m s−1), and geopotential height (contour; gpm); (c) water vapor flux (vector; kg m−1 s−1) and its divergence (shaded; 10−5 kg m−2 s−1), vertically integrated from 1000 to 300 hPa; (d) 850-hPa temperature (shaded; Pa s−1), wind (vector; m s−1), and geopotential height (contour; gpm), which are obtained by subtracting CLIM from CTRL and averaged from 1 June to 31 July 2020. The black arrows and white dotted areas are significant at the 5% level.

  • Bao, Y. Y., 2021: Similarities and differences of monsoon circulations between 2016 and 1998 Meiyu periods in the middle and lower reaches of the Yangtze River and the comparison of their physical mechanisms. Chinese J. Atmos. Sci., 45, 994–1006. Available online at http://www.iapjournals.ac.cn/dqkx/en/article/doi/10.3878/j.issn.1006-9895.2101.20174. Accessed on 13 March 2023. (in Chinese)
    Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541–560. doi: 10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
    Chen, H. S., X. G. Du, and Y. Sun, 2022: Land surface processes and weather research—a review. Earth Sci. Front., 29, 382–400. (in Chinese) doi: 10.13745/j.esf.sf.2021.9.59
    Chow, K. C., Y. M. Liu, J. C. J. Chan, et al., 2006: Effects of surface heating over Indochina and India landmasses on the summer monsoon over South China. Int. J. Climatol., 26, 1339–1359. doi: 10.1002/joc.1310
    Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024. doi: 10.1175/BAMS-84-8-1013
    Ding, Y. H., and J. C. L. Chan., 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142. doi: 10.1007/s00703-005-0125-z
    Ding, Y.-H., J.-J. Liu, Y. Sun, et al., 2007: A study of the synoptic-climatology of the Meiyu system in East Asia. Chinese J. Atmos. Sci., 31, 1082–1101. (in Chinese) doi: 10.3878/j.issn.1006-9895.2007.06.05
    Ding, Y. H., D. Si, Y. J. Liu, et al., 2018: On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon. Chinese J. Atmos. Sci., 42, 533–558. (in Chinese) doi: 10.3878/j.issn.1006-9895.1712.17261
    Ding, Y. H., Y. Y. Liu, and Z. Z. Hu, 2021: The record-breaking Mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., 38, 1980–1993. doi: 10.1007/s00376-021-0361-2
    Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278–288. doi: 10.1175/2008JHM1016.1
    Dong, X., H. S. Chen, Y. Zhou, et al., 2022a: Local and non-local atmospheric effects of abnormal soil moisture over Indochina during May and June. Quart. J. Roy. Meteor. Soc., 148, 2903–2926. doi: 10.1002/qj.4341
    Dong, X., Y. Zhou, H. S. Chen, et al., 2022b: Lag impacts of the anomalous July soil moisture over Southern China on the August rainfall over the Huang–Huai River Basin. Climate Dyn., 58, 1737–1754. doi: 10.1007/s00382-021-05989-1
    Dorigo, W., W. Wagner, C. Albergel, et al., 2017: ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185–215. doi: 10.1016/j.rse.2017.07.001
    Fang, C. X., Y. Liu, Q. F. Cai, et al., 2021: Why does extreme rainfall occur in central China during the summer of 2020 after a weak El Niño? Adv. Atmos. Sci., 38, 2067–2081. doi: 10.1007/s00376-021-1009-y
    Feng, J., W. Chen, C.-Y. Tam, et al., 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 2091–2101. doi: 10.1002/joc.2217
    Gao, C. J., H. S. Chen, B. Xu, et al., 2014: Possible relationships among South China Sea SSTA, soil moisture anomalies in Southwest China and summer precipitation in Eastern China. J. Trop. Meteor., 20, 228–235. doi: 10.16555/j.1006-8775.2014.03.005
    Gao, C. J., H. S. Chen, G. Li, et al., 2019: Land–atmosphere interaction over the Indo-China Peninsula during spring and its effect on the following summer climate over the Yangtze River basin. Climate Dyn., 53, 6181–6198. doi: 10.1007/s00382-019-04922-x
    Gao, C. J., G. Li, H. S. Chen, et al., 2020a: Interdecadal change in the effect of spring soil moisture over the Indo-China Peninsula on the following summer precipitation over the Yangtze River basin. J. Climate, 33, 7063–7082. doi: 10.1175/JCLI-D-19-0754.1
    Gao, C. J., G. Li, B. Xu, et al., 2020b: Effect of spring soil moisture over the Indo-China Peninsula on the following summer extreme precipitation events over the Yangtze River basin. Climate Dyn., 54, 3845–3861. doi: 10.1007/s00382-020-05187-5
    Gao, C. J., G. Li, and B. Xu, 2020c: Weakening influence of spring soil moisture over the Indo-China Peninsula on the following summer Mei-Yu front and precipitation extremes over the Yangtze River basin. J. Climate, 33, 10055–10072. doi: 10.1175/JCLI-D-20-0117.1
    Gu, X. H., J. F. Li, Y. D. Chen, et al., 2019: Consistency and discrepancy of global surface soil moisture changes from multiple model-based data sets against satellite observations. J. Geophys. Res. Atmos., 124, 1474–1495. doi: 10.1029/2018JD029304
    Guo, D., L. W. Wang, Z. K. Li, et al., 2016: Comparison between anomalies of summer rainfall in China in decaying years during super El Niño events of 2015/2016 and 1997/1998. Trans. Atmos. Sci., 39, 835–844. (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20160828010
    Hersbach, H., B. Bell, P. Berrisford, et al., 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049. doi: 10.1002/qj.3803
    Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
    Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi: 10.1175/MWR3199.1
    Iacono, M. J., J. S. Delamere, E. J. Mlawer, et al., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, D13103. doi: 10.1029/2008JD009944
    Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558–570. doi: 10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2
    Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001. doi: 10.1029/2011MS00045
    Li, H. Q., A. Z. Ye, Y. H. Zhang, et al., 2021: Intercomparison and evaluation of multisource soil moisture products in China. Earth Space Sci., 8, e2021EA001845. doi: 10.1029/2021EA001845
    Lin, R. P., J. Zhu, and F. Zheng, 2019: The application of the SVD method to reduce coupled model biases in seasonal predictions of rainfall. J. Geophys. Res. Atmos., 124, 11837–11849. doi: 10.1029/2018JD029927
    Liu, B. Q., Y. H. Yan, C. W. Zhu, et al., 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47, e2020GL090342. doi: 10.1029/2020GL090342
    Liu, Y. Y., and Y. H. Ding, 2020: Characteristics and possible causes for the extreme Meiyu in 2020. Meteor. Mon., 46, 1393–1404. (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.11.001
    Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2010: Technical Description of Version 4.0 of the Community Land Model (CLM). No. NCAR/TN-478+STR, University Corporation for Atmospheric Research, Boulder, 266 pp, doi: 10.5065/D6FB50WZ.
    Rodell, M., P. R. Houser, U. Jambor, et al., 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394. doi: 10.1175/BAMS-85-3-381
    Seneviratne, S. I., D. Lüthi, M. Litschi, et al., 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205–209. doi: 10.1038/nature05095
    Seneviratne, S. I., T. Corti, E. L. Davin, et al., 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125–161. doi: 10.1016/j.earscirev.2010.02.004
    Shi, X., J. C. L. Chan, K. C. Chow, et al., 2008: Effects of upstream surface heat fluxes on the evolution of the South China Sea summer monsoon. Meteor. Atmos. Phys., 100, 303–325. doi: 10.1007/s00703-008-0311-x
    Takaya, Y., I. Ishikawa, C. Kobayashi, et al., 2020: Enhanced Meiyu–Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671. doi: 10.1029/2020GL090671
    Tao, S. Y., and J. Wei, 2006: The westward, northward advance of the subtropical high over the West Pacific in summer. J. Appl. Meteor. Sci., 17, 513–525. (in Chinese)
    Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561–576. doi: 10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2
    Wang, D. N., C. Menz, T. Simon, et al., 2013: Regional dynamical downscaling with CCLM over East Asia. Meteor. Atmos. Phys., 121, 39–53. doi: 10.1007/s00703-013-0250-z
    Wang, L. C., X. G. Sun, X. Q. Yang, et al., 2021: Contribution of water vapor to the record-breaking extreme Meiyu rainfall along the Yangtze River valley in 2020. J. Meteor. Res., 35, 557–570. doi: 10.1007/s13351-021-1030-1
    Wen, N., Z. Y. Liu, and L. Li, 2019: Direct ENSO impact on East Asian summer precipitation in the developing summer. Climate Dyn., 52, 6799–6815. doi: 10.1007/s00382-018-4545-0
    Yang, K., J. Y. Zhang, L. Y. Wu, et al., 2019: Prediction of summer hot extremes over the middle and lower reaches of the Yangtze River valley. Climate Dyn., 52, 2943–2957. doi: 10.1007/s00382-018-4302-4
    Zhang, C. X., and Y. Q. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-Mesh Regional Climate Model. J. Climate, 30, 5923–5941. doi: 10.1175/JCLI-D-16-0597.1
    Zhang, F. H., T. Chen, F. Zhang, et al., 2020: Extreme features of severe precipitation in Meiyu period over the middle and lower reaches of Yangtze River basin in June–July 2020. Meteor. Mon., 46, 1405–1414. (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.11.002
    Zhang, L. X., D. Zhao, T. J. Zhou, et al., 2021: Moisture origins and transport processes for the 2020 Yangtze River valley record-breaking Mei-yu rainfall. Adv. Atmos. Sci., 38, 2125–2136. doi: 10.1007/s00376-021-1097-8
    Zhang, R. H., and Z. Y. Zuo, 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Climate, 24, 3309–3322. doi: 10.1175/2011JCLI4084.1
    Zhang, W. J., Z. C. Huang, F. Jiang, et al., 2021: Exceptionally persistent Madden–Julian Oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys. Res. Lett., 48, e2020GL091588. doi: 10.1029/2020GL091588
    Zhang, Y., Z. Y. Meng, P. J. Zhu, et al., 2016: Mesoscale modeling study of severe convection over complex terrain. Adv. Atmos. Sci., 33, 1259–1270. doi: 10.1007/s00376-016-5221-0
    Zhou, Z. Q., S. P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA, 118, e2022255118. doi: 10.1073/pnas.2022255118
    Zhu, S. G., Y. J. Qi, H. S. Chen, et al., 2021: Distinct impacts of spring soil moisture over the Indo-China Peninsula on summer precipitation in the Yangtze River basin under different SST backgrounds. Climate Dyn., 56, 1895–1918. doi: 10.1007/s00382-020-05567-x
    Zhuang, M. R., A. M. Duan, R. Y. Lu, et al., 2022: Relative impacts of the orography and land–sea contrast over the Indochina Peninsula on the Asian summer monsoon between early and late summer. J. Climate, 35, 3037–3055. doi: 10.1175/JCLI-D-21-0576.1
  • Other Related Supplements

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return