|
|
Chen, H. S., X. G. Du, and Y. Sun, 2022: Land surface processes and weather research—a review. Earth Sci. Front., 29, 382–400. (in Chinese) doi: 10.13745/j.esf.sf.2021.9.59
|
Chow, K. C., Y. M. Liu, J. C. J. Chan, et al., 2006: Effects of surface heating over Indochina and India landmasses on the summer monsoon over South China. Int. J. Climatol., 26, 1339–1359. doi: 10.1002/joc.1310
|
Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024. doi: 10.1175/BAMS-84-8-1013
|
Ding, Y. H., and J. C. L. Chan., 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142. doi: 10.1007/s00703-005-0125-z
|
Ding, Y.-H., J.-J. Liu, Y. Sun, et al., 2007: A study of the synoptic-climatology of the Meiyu system in East Asia. Chinese J. Atmos. Sci., 31, 1082–1101. (in Chinese) doi: 10.3878/j.issn.1006-9895.2007.06.05
|
Ding, Y. H., D. Si, Y. J. Liu, et al., 2018: On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon. Chinese J. Atmos. Sci., 42, 533–558. (in Chinese) doi: 10.3878/j.issn.1006-9895.1712.17261
|
Ding, Y. H., Y. Y. Liu, and Z. Z. Hu, 2021: The record-breaking Mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., 38, 1980–1993. doi: 10.1007/s00376-021-0361-2
|
Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278–288. doi: 10.1175/2008JHM1016.1
|
Dong, X., H. S. Chen, Y. Zhou, et al., 2022a: Local and non-local atmospheric effects of abnormal soil moisture over Indochina during May and June. Quart. J. Roy. Meteor. Soc., 148, 2903–2926. doi: 10.1002/qj.4341
|
Dong, X., Y. Zhou, H. S. Chen, et al., 2022b: Lag impacts of the anomalous July soil moisture over Southern China on the August rainfall over the Huang–Huai River Basin. Climate Dyn., 58, 1737–1754. doi: 10.1007/s00382-021-05989-1
|
Dorigo, W., W. Wagner, C. Albergel, et al., 2017: ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sens. Environ., 203, 185–215. doi: 10.1016/j.rse.2017.07.001
|
Fang, C. X., Y. Liu, Q. F. Cai, et al., 2021: Why does extreme rainfall occur in central China during the summer of 2020 after a weak El Niño? Adv. Atmos. Sci., 38, 2067–2081. doi: 10.1007/s00376-021-1009-y
|
Feng, J., W. Chen, C.-Y. Tam, et al., 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 2091–2101. doi: 10.1002/joc.2217
|
Gao, C. J., H. S. Chen, B. Xu, et al., 2014: Possible relationships among South China Sea SSTA, soil moisture anomalies in Southwest China and summer precipitation in Eastern China. J. Trop. Meteor., 20, 228–235. doi: 10.16555/j.1006-8775.2014.03.005
|
Gao, C. J., H. S. Chen, G. Li, et al., 2019: Land–atmosphere interaction over the Indo-China Peninsula during spring and its effect on the following summer climate over the Yangtze River basin. Climate Dyn., 53, 6181–6198. doi: 10.1007/s00382-019-04922-x
|
Gao, C. J., G. Li, H. S. Chen, et al., 2020a: Interdecadal change in the effect of spring soil moisture over the Indo-China Peninsula on the following summer precipitation over the Yangtze River basin. J. Climate, 33, 7063–7082. doi: 10.1175/JCLI-D-19-0754.1
|
Gao, C. J., G. Li, B. Xu, et al., 2020b: Effect of spring soil moisture over the Indo-China Peninsula on the following summer extreme precipitation events over the Yangtze River basin. Climate Dyn., 54, 3845–3861. doi: 10.1007/s00382-020-05187-5
|
Gao, C. J., G. Li, and B. Xu, 2020c: Weakening influence of spring soil moisture over the Indo-China Peninsula on the following summer Mei-Yu front and precipitation extremes over the Yangtze River basin. J. Climate, 33, 10055–10072. doi: 10.1175/JCLI-D-20-0117.1
|
Gu, X. H., J. F. Li, Y. D. Chen, et al., 2019: Consistency and discrepancy of global surface soil moisture changes from multiple model-based data sets against satellite observations. J. Geophys. Res. Atmos., 124, 1474–1495. doi: 10.1029/2018JD029304
|
Guo, D., L. W. Wang, Z. K. Li, et al., 2016: Comparison between anomalies of summer rainfall in China in decaying years during super El Niño events of 2015/2016 and 1997/1998. Trans. Atmos. Sci., 39, 835–844. (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20160828010
|
Hersbach, H., B. Bell, P. Berrisford, et al., 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049. doi: 10.1002/qj.3803
|
Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
|
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi: 10.1175/MWR3199.1
|
Iacono, M. J., J. S. Delamere, E. J. Mlawer, et al., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos., 113, D13103. doi: 10.1029/2008JD009944
|
|
Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001. doi: 10.1029/2011MS00045
|
Li, H. Q., A. Z. Ye, Y. H. Zhang, et al., 2021: Intercomparison and evaluation of multisource soil moisture products in China. Earth Space Sci., 8, e2021EA001845. doi: 10.1029/2021EA001845
|
Lin, R. P., J. Zhu, and F. Zheng, 2019: The application of the SVD method to reduce coupled model biases in seasonal predictions of rainfall. J. Geophys. Res. Atmos., 124, 11837–11849. doi: 10.1029/2018JD029927
|
Liu, B. Q., Y. H. Yan, C. W. Zhu, et al., 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47, e2020GL090342. doi: 10.1029/2020GL090342
|
Liu, Y. Y., and Y. H. Ding, 2020: Characteristics and possible causes for the extreme Meiyu in 2020. Meteor. Mon., 46, 1393–1404. (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.11.001
|
Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2010: Technical Description of Version 4.0 of the Community Land Model (CLM). No. NCAR/TN-478+STR, University Corporation for Atmospheric Research, Boulder, 266 pp, doi: 10.5065/D6FB50WZ.
|
Rodell, M., P. R. Houser, U. Jambor, et al., 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394. doi: 10.1175/BAMS-85-3-381
|
Seneviratne, S. I., D. Lüthi, M. Litschi, et al., 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205–209. doi: 10.1038/nature05095
|
Seneviratne, S. I., T. Corti, E. L. Davin, et al., 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125–161. doi: 10.1016/j.earscirev.2010.02.004
|
Shi, X., J. C. L. Chan, K. C. Chow, et al., 2008: Effects of upstream surface heat fluxes on the evolution of the South China Sea summer monsoon. Meteor. Atmos. Phys., 100, 303–325. doi: 10.1007/s00703-008-0311-x
|
Takaya, Y., I. Ishikawa, C. Kobayashi, et al., 2020: Enhanced Meiyu–Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671. doi: 10.1029/2020GL090671
|
Tao, S. Y., and J. Wei, 2006: The westward, northward advance of the subtropical high over the West Pacific in summer. J. Appl. Meteor. Sci., 17, 513–525. (in Chinese)
|
|
Wang, D. N., C. Menz, T. Simon, et al., 2013: Regional dynamical downscaling with CCLM over East Asia. Meteor. Atmos. Phys., 121, 39–53. doi: 10.1007/s00703-013-0250-z
|
Wang, L. C., X. G. Sun, X. Q. Yang, et al., 2021: Contribution of water vapor to the record-breaking extreme Meiyu rainfall along the Yangtze River valley in 2020. J. Meteor. Res., 35, 557–570. doi: 10.1007/s13351-021-1030-1
|
Wen, N., Z. Y. Liu, and L. Li, 2019: Direct ENSO impact on East Asian summer precipitation in the developing summer. Climate Dyn., 52, 6799–6815. doi: 10.1007/s00382-018-4545-0
|
Yang, K., J. Y. Zhang, L. Y. Wu, et al., 2019: Prediction of summer hot extremes over the middle and lower reaches of the Yangtze River valley. Climate Dyn., 52, 2943–2957. doi: 10.1007/s00382-018-4302-4
|
Zhang, C. X., and Y. Q. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-Mesh Regional Climate Model. J. Climate, 30, 5923–5941. doi: 10.1175/JCLI-D-16-0597.1
|
Zhang, F. H., T. Chen, F. Zhang, et al., 2020: Extreme features of severe precipitation in Meiyu period over the middle and lower reaches of Yangtze River basin in June–July 2020. Meteor. Mon., 46, 1405–1414. (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.11.002
|
Zhang, L. X., D. Zhao, T. J. Zhou, et al., 2021: Moisture origins and transport processes for the 2020 Yangtze River valley record-breaking Mei-yu rainfall. Adv. Atmos. Sci., 38, 2125–2136. doi: 10.1007/s00376-021-1097-8
|
Zhang, R. H., and Z. Y. Zuo, 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Climate, 24, 3309–3322. doi: 10.1175/2011JCLI4084.1
|
Zhang, W. J., Z. C. Huang, F. Jiang, et al., 2021: Exceptionally persistent Madden–Julian Oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys. Res. Lett., 48, e2020GL091588. doi: 10.1029/2020GL091588
|
Zhang, Y., Z. Y. Meng, P. J. Zhu, et al., 2016: Mesoscale modeling study of severe convection over complex terrain. Adv. Atmos. Sci., 33, 1259–1270. doi: 10.1007/s00376-016-5221-0
|
Zhou, Z. Q., S. P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA, 118, e2022255118. doi: 10.1073/pnas.2022255118
|
Zhu, S. G., Y. J. Qi, H. S. Chen, et al., 2021: Distinct impacts of spring soil moisture over the Indo-China Peninsula on summer precipitation in the Yangtze River basin under different SST backgrounds. Climate Dyn., 56, 1895–1918. doi: 10.1007/s00382-020-05567-x
|
Zhuang, M. R., A. M. Duan, R. Y. Lu, et al., 2022: Relative impacts of the orography and land–sea contrast over the Indochina Peninsula on the Asian summer monsoon between early and late summer. J. Climate, 35, 3037–3055. doi: 10.1175/JCLI-D-21-0576.1
|