Effects of Soil Hydraulic Properties on Soil Moisture Estimation

土壤水力属性对土壤湿度估算的影响

+ Author Affiliations + Find other works by these authors
  • Corresponding author: Xiaolei JIANG, xljiang715@yzu.edu.cn
  • Funds:

    Supported by the National Natural Science Foundation of China (52109036, 51709046, 51539003, 41761134090, 41830752, and 42071033), Belt and Road Special Foundation of the State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering of Hohai University (2021490611), Open Foundation of Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources (HYMED202203, HYMED202210), and Lanzhou Institute of Arid Meteorology (IAM202119). Data are provided by the National Tibetan Plateau Data Center of China

  • doi: 10.1007/s13351-023-2049-2

PDF

  • Accurate quantification of soil moisture is essential to understand the land surface processes. Soil hydraulic properties influence water transport in soil and thus affect the estimation of soil moisture. However, some soil hydraulic properties are only observable at a few field sites. In this study, the effects of soil hydraulic properties on soil moisture estimation are investigated by using the one-dimensional (1-D) Richards equation at ELBARA, which is part of the Maqu monitoring network over the Tibetan Plateau (TP), China. Soil moisture assimilation experiments are then conducted with the unscented weighted ensemble Kalman filter (UWEnKF). The results show that the soil hydraulic properties significantly affect soil moisture simulation. Saturated soil hydraulic conductivity (Ksat) is optimized based on its observations in each soil layer with a genetic algorithm (GA, a widely used optimization method in hydrology), and the 1-D Richards equation performs well using the optimized values. If the range of Ksat for a complete soil profile is known for a particular soil texture (rather than for arbitrary layers within the horizon), optimized Ksat for each soil layer can be obtained by increasing the number of generations in GA, although this increases the computational cost of optimization. UWEnKF performs well with optimized Ksat, and improves the accuracy of soil moisture simulation more than that with calculated Ksat. Sometimes, better soil moisture estimation can be obtained by using opti-mized saturated volumetric soil moisture content Ksat. In summary, an accurate soil profile can be obtained by using soil moisture assimilation with optimized soil hydraulic properties.
    土壤湿度(SM)的精确量化对理解陆面过程至关重要。然而,影响SM估算的一些土壤水力属性(SHP)的观测,仅限于有限的实验站点。为评估SHP对SM的影响,本文在青藏高原玛曲观测网的ELBARA站点开展了基于一维理查德方程的SM模拟结果对SHP观测值的敏感性研究,然后利用无迹加权集合卡尔曼滤波(UWEnKF)同化方法进行SM估算并探讨估算结果的相关敏感性。结果表明,SHP显著影响SM的模拟结果。当利用遗传算法对饱和水力传导度在每层观测范围内进行优化后,SM的模拟结果得到提高。另外,仅仅知道某个土壤类型的变化范围时,可以增加遗传迭代次数获取的优化值。基于优化后的,利用UWEnKF可以显著提高SM的估算精度。利用优化后的饱和土壤含水量也可能获得较好的SM估算值。本文揭示通过同化方法叠加参数优化可以提高SM的估算精度,为获取不同时空尺度高精度的SM奠定基础。
  • 加载中
  • Fig. 1.  ELBARA experimental site at the Maqu monitoring network in SRYR (Fu et al., 2022).

    Fig. 2.  Schematic diagram for numerical scheme (Lawrence et al., 2018; Fu et al., 2022).

    Fig. 3.  Variations of soil moisture simulations and observations in different depths. The gray shaded area (Simulation range) shows the range of an open loop with observed values of $ {\mathrm{\theta }}_{\mathrm{sat}} $ varied; the purple shaded area (Simulation-cal range) shows the range of an open loop with calculated values of ${\rm{\theta }}_{\rm sat}$ varied using Eq. (5); the purple area appears to be a line, because the range of calculated $ {\mathrm{\theta }}_{\mathrm{sat}} $ is small, which leads to a small difference in soil moisture simulations for different calculated $ {\mathrm{\theta }}_{\mathrm{sat}} $; ${\rm{\theta }}_{{\rm sat}{{\text -}{{\rm{min}}}}}$ and ${\mathrm{\theta }}_{{\mathrm{sat}}{\text-}{\rm max} }$ are the soil moisture simulations for the smallest and largest observed values of $ {\mathrm{\theta }}_{\mathrm{sat}} $.

    Fig. 4.  RMSE between the soil moisture simulation and observation with different values of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $. The left column shows RMSE with observed $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ varied; the right column shows RMSE with calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in Eq. (5), and RMSE seems a constant because of the small change in calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $.

    Fig. 5.  As in Fig. 3, but for $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $.

    Fig. 6.  RMSE between soil moisture simulation and observation for various ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$. The left column shows RMSE for varied observed $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $; the right column shows RMSE for varied calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in Eq. (4).

    Fig. 7.  Variations of soil moisture simulations and observations. The gray shaded area (simulation-cal range) shows the range of an open loop with various calculated values of $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in the left column of Eq. (7) and various calculated values of B in the right column of Eq. (6).

    Fig. 8.  Optimized Ksat with different ranges depending on the values for four soil interfaces (Table 1): Ksat ∈ (1.14 × 10−3, 8.53 × 10−3) mm s−1 for interface 1, Ksat ∈ (7.44 × 10−4, 6.27 × 10−3) mm s−1 for interface 2, Ksat ∈ (1.57 × 10−4, 7.33 × 10−4) mm s−1 for interface 3, and Ksat ∈ (2.67 × 10−4, 2.63 × 10−2) mm s−1 for interface 4.

    Fig. 9.  Soil moisture assimilation using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (left column; a1–a4) and calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (right column; b1–b4) with an assimilation interval 12 ∆t.

    Fig. 10.  Soil moisture assimilation using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (left column; a1–a4) and calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $; (right column; b1–b4) with 24 ∆t assimilation interval.

    Fig. 11.  Optimized ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$ for the same range 1.57 × 10−4 to 2.63 × 10−2 mm s−1 at the four interfaces between two adjacent soil layers, i.e., ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$ ∈ (1.57 × 10−4, 2.63 × 10−2) mm s−1 for interfaces 1 to 4.

    Fig. 12.  Optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ with the range 0.37 to 0.85 m3 m−3 by GA for four soil layers.

    Fig. 13.  Soil moisture assimilation using optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ with assimilation interval 12 ∆t.

    Fig. 14.  Soil moisture assimilation using optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and optimized ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$ with an assimilation interval 12 ∆t.

    Table 1.  Profiles of basic soil properties at Maqu

    Depth (cm)Sand (%)Clay (%)Silt (%)Bulk density
    (g cm−3)
    Porosity
    (m3 m−3)
    Ksat (mm s−1)
    minmeanmaxminmeanmaxminmeanmaxminmeanmaxminmeanmaxminmeanmax
    514.4526.9541.378.66 9.8611.0349.7063.1975.020.390.761.060.600.730.85
    1014.4429.0347.598.40 9.9511.2544.0161.0274.310.530.951.210.570.660.801.14 × 10−33.87 × 10−38.53 × 10−3
    2017.0029.2045.349.4210.1510.9044.3060.6572.810.861.231.490.510.590.697.44 × 10−43.85 × 10−36.27 × 10−3
    4017.8131.6053.119.0110.4311.5537.8857.9770.861.191.401.550.370.510.621.57 × 10−43.64 × 10−47.33 × 10−4
    8019.0634.8363.315.47 9.3513.8731.2255.8269.461.151.491.710.410.470.602.67 × 10−48.76 × 10−32.63 × 10−2
    Note: Sand, silt, and clay are the standard particle size classes of the United States Department of Agriculture (USDA), porosity is saturated volumetric soil moisture content.
    Download: Download as CSV

    Table 2.  The ranges of soil hydraulic parameters calculated using Eqs. (4)–(7)

    Depth (cm)$ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (m3 m−3)${{K} }_{\mathrm{s}\mathrm{a}\mathrm{t} }$ (mm s−1)$ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (mm)B
    minmaxminmaxminmaxminmax
    50.48850.48887.97 × 10−48.05 × 10−4−755.28−749.172.92382.9275
    100.48840.48886.86 × 10−46.94 × 10−4−755.28−747.772.92342.9279
    200.48840.48885.09 × 10−45.14 × 10−4−754.70−748.272.92502.9273
    400.48830.48882.79 × 10−42.83 × 10−4−754.51−746.522.92432.9284
    800.48820.48881.26 × 10−41.28 × 10−4−754.23−744.232.91872.9321
    Note: “↓” is the saturated hydraulic conductivity at the downward interface of two adjacent layers.
    Download: Download as CSV

    Table 3.  RMSE and SS for simulation and assimilation using GA-optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ with an assimilation interval 12 ∆t

    Depth (cm)Optimized ${ {K} }_{\mathrm{s}\mathrm{a}\mathrm{t} }$Calculated (without optimization) ${ {K} }_{\mathrm{s}\mathrm{a}\mathrm{t} }$
    RMSE (m3 m−3)AE (m3 m−3)SSRMSE (m3 m−3)AE (m3 m−3)SS
    SimulationAssimilationSimulationAssimilation
    50.02810.02150.00660.41200.04830.04260.00570.2244
    200.02320.01480.00840.59110.03960.03200.00760.3469
    500.02610.01610.01000.61780.03260.02160.01100.5615
    800.03940.02600.01340.56420.05220.04230.00990.3425
    Note: “AE” is the absolute error between RMSE for simulation and RMSE for assimilation; calculated Ksat is obtained using Eq. (4) according to the observed mean values of basic soil properties (Table 1).
    Download: Download as CSV

    Table 4.  RMSE and SS for simulation and assimilation using GA-optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$ with assimilation interval 12 ∆t

    Depth (cm)Optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $Optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and ${ {K} }_{\mathrm{s}\mathrm{a}\mathrm{t} }$
    RMSE (m3 m−3)SSRMSE (m3 m−3)SS
    SimulationAssimilationSimulationAssimilation
    50.02730.02470.18390.01410.01340.0914
    200.01920.01500.38650.01030.00920.2074
    500.01640.00950.66520.01080.00830.4144
    800.03580.02780.39610.02250.01620.4799
    Download: Download as CSV
  • [1]

    Allen, R. G., 2000: Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol., 229, 27–41. doi: 10.1016/S0022-1694(99)00194-8.
    [2]

    Arifovic, J., 1994: Genetic algorithm learning and the cobweb model. J. Econom. Dyn. Control., 18, 3–28. doi: 10.1016/0165-1889(94)90067-1.
    [3]

    Assouline, S., and J. Selker, 2017: Introduction and evaluation of a Weibull hydraulic conductivity-pressure head relationship for unsaturated soils. Water Resour. Res., 53, 4956–4964. doi: 10.1002/2017WR020796.
    [4]

    Bies, R. R., M. F. Muldoon, B. G. Pollock, et al., 2006: A genetic algorithm-based, hybrid machine learning approach to model selection. J. Pharmacokinet. Pharmacodyn., 33, 195–221. doi: 10.1007/s10928-006-9004-6.
    [5]

    Brandhorst, N., D. Erdal, and I. Neuweiler, 2017: Soil moisture prediction with the ensemble Kalman filter: Handling uncertainty of soil hydraulic parameters. Adv. Water Resour., 110, 360–370. doi: 10.1016/j.advwatres.2017.10.022.
    [6]

    Chen, J. L., J. Wen, H. Tian, et al., 2018: A study of soil thermal and hydraulic properties and parameterizations for CLM in the SRYR. J. Geophys. Res. Atmos., 123, 8487–8499. doi: 10.1029/2017JD028034.
    [7]

    Chirico, G. B., H. Medina, and N. Romano, 2014: Kalman filters for assimilating near-surface observations into the Richards equation–Part 1: Retrieving state profiles with linear and nonlinear numerical schemes. Hydrol. Earth Syst. Sci., 18, 2503–2520. doi: 10.5194/hess-18-2503-2014.
    [8]

    Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601–604. doi: 10.1029/WR014i004p00601.
    [9]

    Deng, Y. H., S. J. Wang, X. Y. Bai, et al., 2020: Comparison of soil moisture products from microwave remote sensing, land model, and reanalysis using global ground observations. Hydrol. Process., 34, 836–851. doi: 10.1002/hyp.13636.
    [10]

    Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. No. NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, doi: 10.5065/D67W6959.
    [11]

    Dong, J. Z., S. C. Steele-Dunne, J. Judge, et al., 2015: A particle batch smoother for soil moisture estimation using soil temperature observations. Adv. Water Resour., 83, 111–122. doi: 10.1016/j.advwatres.2015.05.017.
    [12]

    Dong, J. Z., S. C. Steele-Dunne, T. E. Ochsner, et al., 2016: Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures. Water Resour. Res., 52, 4280–4300. doi: 10.1002/2015wr018425.
    [13]

    Famiglietti, J. S., and E. F. Wood, 1994: Multiscale modeling of spatially variable water and energy balance processes. Water Resour. Res., 30, 3061–3078. doi: 10.1029/94WR01498.
    [14]

    Fu, X. L., Z. B. Yu, L. F. Luo, et al., 2014: Investigating soil moisture sensitivity to precipitation and evapotranspiration errors using SiB2 model and ensemble Kalman filter. Stoch. Environ. Res. Risk Assess., 28, 681–693. doi: 10.1007/s00477-013-0781-3.
    [15]

    Fu, X. L., L. F. Luo, M. Pan, et al., 2018: Evaluation of TOPMODEL-based land surface-atmosphere transfer scheme (TOPLATS) through a soil moisture simulation. Earth Interact., 22, 1–19. doi: 10.1175/EI-D-17-0037.1.
    [16]

    Fu, X. L., Z. B. Yu, Y. Tang, et al., 2019: Evaluating soil moisture predictions based on ensemble Kalman filter and SiB2 model. J. Meteor. Res., 33, 190–205. doi: 10.1007/s13351-019-8138-6.
    [17]

    Fu, X. L., Z. B. Yu, Y. J. Ding, et al., 2020: Unscented weighted ensemble Kalman filter for soil moisture assimilation. J. Hydrol., 580, 124352. doi: 10.1016/j.jhydrol.2019.124352.
    [18]

    Fu, X. L., X. L. Jiang, Z. B. Yu, et al., 2022: Understanding the key factors that influence soil moisture estimation using the unscented weighted ensemble Kalman filter. Agric. Forest Meteor., 313, 108,745. doi: 10.1016/j.agrformet.2021.108745.
    [19]

    Gevaert, A. I., L. J. Renzullo, A. I. J. M. van Dijk, et al., 2018: Joint assimilation of soil moisture retrieved from multiple passive microwave frequencies increases robustness of soil moisture state estimation. Hydrol. Earth Syst. Sci., 22, 4605–4619. doi: 10.5194/hess-22-4605-2018.
    [20]

    Han, X. J., and X. Li, 2008: An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sens. Environ., 112, 1434–1449. doi: 10.1016/j.rse.2007.07.008.
    [21]

    Han, X. J., H. J. H. Franssen, C. Montzka, et al., 2014: Soil moisture and soil properties estimation in the Community Land Model with synthetic brightness temperature observations. Water Resour. Res., 50, 6081–6105. doi: 10.1002/2013WR014586.
    [22]

    Huang, C. L., W. J. Chen, Y. Li, et al., 2016: Assimilating multi-source data into land surface model to simultaneously improve estimations of soil moisture, soil temperature, and surface turbulent fluxes in irrigated fields. Agric. Forest Meteor., 230–231, 142–156, doi: 10.1016/j.agrformet.2016.03.013.
    [23]

    Jia, D. Y., J. Wen, X. Wang, et al., 2019: Soil hydraulic conductivity and its influence on soil moisture simulations in the source region of the Yellow River—take Maqu as an example. Sci. Cold Arid Reg., 11, 360–370. doi: 10.3724/SP.J.1226.2019.00360.
    [24]

    Ju, F., R. An, and Y. X. Sun, 2019: Immune evolution particle filter for soil moisture data assimilation. Water, 11, 211. doi: 10.3390/w11020211.
    [25]

    Keefer, T. O., M. S. Moran, and G. B. Paige, 2008: Long-term meteorological and soil hydrology database, walnut gulch experimental watershed, Arizona, United States. Water Resour. Res., 44, W05S07. doi: 10.1029/2006WR005702.
    [26]

    Kolassa, J., R. H. Reichle, Q. Liu, et al., 2018: Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote Sens. Environ., 204, 43–59. doi: 10.1016/j.rse.2017.10.045.
    [27]

    Lawrence, D., R. Fisher, C. Koven, et al., 2018: Technical Description of version 5.0 of the Community Land Model (CLM). National Center for Atmospheric Research, Boulder. Available online at https://escomp.github.io/ctsm-docs/versions/release-clm5.0/html/users_guide/index.html. Accessed on 29 January 2023.
    [28]

    Lyu, H. S., Z. B. Yu, Y. H. Zhu, et al., 2011: Dual state-parameter estimation of root zone soil moisture by optimal parameter estimation and extended Kalman filter data assimilation. Adv. Water Resour., 34, 395–406. doi: 10.1016/j.advwatres.2010.12.005.
    [29]

    Murphy, A. H., 1996: General decompositions of MSE-based skill scores: Measures of some basic aspects of forecast quality. Mon. Wea. Rev., 124, 2353–2369. doi: 10.1175/1520-0493(1996)124<2353:gdombs>2.0.co;2.
    [30]

    Naz, B. S., S. Kollet, H. J. H. Franssen, et al., 2020: A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015. Sci. Data, 7, 111. doi: 10.1038/s41597-020-0450-6.
    [31]

    Oleson, K. W., Y. J. Dai, G. Bonan, et al., 2004: Technical Description of the Community Land Model (CLM). No. NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder. Available online at http://dx.doi.org/10.5065/D6N877R0. Accessed on 29 January 2023.
    [32]

    Reichle, R. H., G. J. M. De Lannoy, Q. Liu, et al., 2017: Assessment of the SMAP Level-4 surface and root-zone soil moisture product using in situ measurements. J. Hydrometeor., 18, 2621–2645. doi: 10.1175/JHM-D-17-0063.1.
    [33]

    Richards, L. A., 1931: Capillary conduction of liquids through porous mediums. Physics, 1, 318–333. doi: 10.1063/1.1745010.
    [34]

    Sellers, P. J., D. A. Randall, G. J. Collatz, et al., 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. J. Climate, 9, 676–705. doi: 10.1175/1520-0442(1996)009<0676:arlspf>2.0.co;2.
    [35]

    Seo, E., M.-I. Lee, and R. H. Reichle, 2021: Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the Local Ensemble Transform Kalman filter. Remote Sens. Environ., 253, 112222. doi: 10.1016/j.rse.2020.112222.
    [36]

    Su, Z., J. Wen, Y. Zeng, et al., 2020: Multiyear in-situ L-band microwave radiometry of land surface processes on the Tibetan Plateau. Sci. Data, 7, 317. doi: 10.1038/s41597-020-00657-1.
    [37]

    Tangdamrongsub, N., S. C. Han, I. Y. Yeo, et al., 2020: Multivariate data assimilation of GRACE, SMOS, SMAP measurements for improved regional soil moisture and groundwater storage estimates. Adv. Water Resour., 135, 103477. doi: 10.1016/j.advwatres.2019.103477.
    [38]

    Vereecken, H., J. A. Huisman, H. Bogena, et al., 2008: On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res., 44, W00D06. doi: 10.1029/2008WR006829.
    [39]

    Weerts, A. H., and G. Y. H. El Serafy, 2006: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res., 42, W09403. doi: 10.1029/2005WR004093.
    [40]

    Xu, S. Q., Z. B. Yu, K. Zhang, et al., 2018: Simulating canopy conductance of the Haloxylon ammodendron shrubland in an arid inland river basin of northwest China. Agric. Forest Meteor., 249, 22–34. doi: 10.1016/j.agrformet.2017.11.015.
    [41]

    Yan, H. X., C. M. DeChant, and H. Moradkhani, 2015: Improving soil moisture profile prediction with the particle filter-Markov Chain Monte Carlo method. IEEE Trans. Geosci. Remote Sens., 53, 6134–6147. doi: 10.1109/TGRS.2015.2432067.
    [42]

    Yang, S. H., R. Li, T. H. Wu, et al., 2021: Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau. Geoderma, 401, 115330. doi: 10.1016/j.geoderma.2021.115330.
    [43]

    Yu, Z. B., T. N. Carlson, E. J. Barron, et al., 2001: On evaluating the spatial–temporal variation of soil moisture in the Susquehanna River Basin. Water Resour. Res., 37, 1313–1326. doi: 10.1029/2000WR900369.
    [44]

    Yu, Z. B., D. Liu, H. S. Lyu, et al., 2012: A multi-layer soil moisture data assimilation using support vector machines and ensemble particle filter. J. Hydrol., 475, 53–64. doi: 10.1016/j.jhydrol.2012.08.034.
    [45]

    Yu, Z. B., X. L. Fu, L. F. Luo, et al., 2014: One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter. Water Resour. Res., 50, 6950–6965. doi: 10.1002/2012WR013473.
    [46]

    Zhao, H., Y. J. Zeng, S. N. Lv, et al., 2018: Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau. Earth Syst. Sci. Data, 10, 1031–1061. doi: 10.5194/essd-10-1031-2018.
    [47]

    Zhao, L., Z.-L. Yang, and T. J. Hoar, 2016: Global soil moisture estimation by assimilating AMSR-E brightness temperatures in a coupled CLM4-RTM-DART system. J. Hydrometeor., 17, 2431–2454. doi: 10.1175/JHM-D-15-0218.1.
    [48]

    Zheng, D. H., X. Wang, R. van der Velde, et al., 2017: L-band microwave emission of soil freeze-thaw process in the Third Pole environment. IEEE Trans. Geosci. Remote Sens., 55, 5324–5338. doi: 10.1109/tgrs.2017.2705248.
    [49]

    Zohaib, M., H. Kim, and M. Choi, 2017: Evaluating the patterns of spatiotemporal trends of root zone soil moisture in major climate regions in East Asia. J. Geophys. Res. Atmos., 122, 7705–7722. doi: 10.1002/2016JD026379.
  • Xiaolei JIANG and Xiaolei FU.pdf

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Effects of Soil Hydraulic Properties on Soil Moisture Estimation

    Corresponding author: Xiaolei JIANG, xljiang715@yzu.edu.cn
  • 1. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009
  • 2. Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science & Technology, Nanjing 210044
  • 3. State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098
  • 4. Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098
  • 5. Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098
  • 6. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000
  • 7. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101
Funds: Supported by the National Natural Science Foundation of China (52109036, 51709046, 51539003, 41761134090, 41830752, and 42071033), Belt and Road Special Foundation of the State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering of Hohai University (2021490611), Open Foundation of Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources (HYMED202203, HYMED202210), and Lanzhou Institute of Arid Meteorology (IAM202119). Data are provided by the National Tibetan Plateau Data Center of China

Abstract: Accurate quantification of soil moisture is essential to understand the land surface processes. Soil hydraulic properties influence water transport in soil and thus affect the estimation of soil moisture. However, some soil hydraulic properties are only observable at a few field sites. In this study, the effects of soil hydraulic properties on soil moisture estimation are investigated by using the one-dimensional (1-D) Richards equation at ELBARA, which is part of the Maqu monitoring network over the Tibetan Plateau (TP), China. Soil moisture assimilation experiments are then conducted with the unscented weighted ensemble Kalman filter (UWEnKF). The results show that the soil hydraulic properties significantly affect soil moisture simulation. Saturated soil hydraulic conductivity (Ksat) is optimized based on its observations in each soil layer with a genetic algorithm (GA, a widely used optimization method in hydrology), and the 1-D Richards equation performs well using the optimized values. If the range of Ksat for a complete soil profile is known for a particular soil texture (rather than for arbitrary layers within the horizon), optimized Ksat for each soil layer can be obtained by increasing the number of generations in GA, although this increases the computational cost of optimization. UWEnKF performs well with optimized Ksat, and improves the accuracy of soil moisture simulation more than that with calculated Ksat. Sometimes, better soil moisture estimation can be obtained by using opti-mized saturated volumetric soil moisture content Ksat. In summary, an accurate soil profile can be obtained by using soil moisture assimilation with optimized soil hydraulic properties.

土壤水力属性对土壤湿度估算的影响

土壤湿度(SM)的精确量化对理解陆面过程至关重要。然而,影响SM估算的一些土壤水力属性(SHP)的观测,仅限于有限的实验站点。为评估SHP对SM的影响,本文在青藏高原玛曲观测网的ELBARA站点开展了基于一维理查德方程的SM模拟结果对SHP观测值的敏感性研究,然后利用无迹加权集合卡尔曼滤波(UWEnKF)同化方法进行SM估算并探讨估算结果的相关敏感性。结果表明,SHP显著影响SM的模拟结果。当利用遗传算法对饱和水力传导度在每层观测范围内进行优化后,SM的模拟结果得到提高。另外,仅仅知道某个土壤类型的变化范围时,可以增加遗传迭代次数获取的优化值。基于优化后的,利用UWEnKF可以显著提高SM的估算精度。利用优化后的饱和土壤含水量也可能获得较好的SM估算值。本文揭示通过同化方法叠加参数优化可以提高SM的估算精度,为获取不同时空尺度高精度的SM奠定基础。
    2.   Field site and data
    • The experiment is conducted at the ELBARA field site (a microwave observation system with the third generation European Space Agency (ESA) L-Band Radiometer), which is part of the Maqu soil moisture and soil temperature (SMST) monitoring network in SRYR, China (Fig. 1). The data at ELBARA are observed from 2016 to August 2019 (Su et al., 2020). The time step is 30 min for observed leaf area index (LAI) and meteorological data (e.g., precipitation, wind speed, air pressure, and air temperature) and is 15 min for observed soil moisture. Considering the need for completeness and continuity in the soil moisture observations, the observed data from 31 July 2017 (day 212) to 31 October 2017 (day 304) are used in this study. The main land cover is alpine meadow, and soil texture includes loam, sandy loam, and silt loam at different soil depths in the Maqu SMST monitoring network (Zheng et al., 2017; Zhao et al., 2018). Table 1 shows the observational ranges of basic soil properties at the Maqu monitoring network.

      Figure 1.  ELBARA experimental site at the Maqu monitoring network in SRYR (Fu et al., 2022).

      Depth (cm)Sand (%)Clay (%)Silt (%)Bulk density
      (g cm−3)
      Porosity
      (m3 m−3)
      Ksat (mm s−1)
      minmeanmaxminmeanmaxminmeanmaxminmeanmaxminmeanmaxminmeanmax
      514.4526.9541.378.66 9.8611.0349.7063.1975.020.390.761.060.600.730.85
      1014.4429.0347.598.40 9.9511.2544.0161.0274.310.530.951.210.570.660.801.14 × 10−33.87 × 10−38.53 × 10−3
      2017.0029.2045.349.4210.1510.9044.3060.6572.810.861.231.490.510.590.697.44 × 10−43.85 × 10−36.27 × 10−3
      4017.8131.6053.119.0110.4311.5537.8857.9770.861.191.401.550.370.510.621.57 × 10−43.64 × 10−47.33 × 10−4
      8019.0634.8363.315.47 9.3513.8731.2255.8269.461.151.491.710.410.470.602.67 × 10−48.76 × 10−32.63 × 10−2
      Note: Sand, silt, and clay are the standard particle size classes of the United States Department of Agriculture (USDA), porosity is saturated volumetric soil moisture content.

      Table 1.  Profiles of basic soil properties at Maqu

    3.   Methodology
    • The following one-dimensional (1-D) Richards equation is often used to describe the vertical movement of soil water in the unsaturated zone (Richards, 1931; Chirico et al., 2014) in some land surface models (e.g., CLM):

      $$ \frac{\partial \theta }{\partial t}=\frac{\partial }{\partial z}\left[K\left(\theta \right)\frac{\partial \psi }{\partial z}-K\left(\theta \right)\right]-e, $$ (1)

      where $ \theta $, $ K $, and $ \psi $ are volumetric soil moisture content (m3 m−3), soil hydraulic conductivity (mm s−1), and soil matric potential (mm), respectively; $ t $, $ z $, and $ e $ are time (s), soil depth (mm), and soil moisture sink term (mm mm−1 s−1), respectively. The following relationship between $ \theta $, $ K $, and $ \psi $ is used to solve the above equation (Clapp and Hornberger, 1978):

      $$ \quad\quad\quad\quad \psi \left(\mathrm{\theta }\right)={\psi }_{\rm sat}{\left(\frac{\theta }{{\theta }_{\rm sat}}\right)}^{-B}, $$ (2)
      $$\quad\quad\quad\quad K\left(\mathrm{\theta }\right)={K}_{\rm sat}{\left(\frac{\theta }{{\theta }_{\rm sat}}\right)}^{2B+3}, $$ (3)

      where $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, and B are saturated volumetric soil moisture content (i.e., porosity; m3 m−3), saturated soil hydraulic conductivity (mm s−1), saturated soil matric potential (mm), and exponent of the soil porosity distribution, respectively. They are calculated in CLM as follows:

      $$\begin{aligned} {K}_{\rm sat}& \left[{z}_{h,i}^{}\right]=0.0070556 \; \times{10}^{-0.884 + 0.0153\times {{P}_{{\rm{s}},i}}}\\ &\times \Bigg[\mathrm{e}\mathrm{x}\mathrm{p}\Bigg(-\frac{{z}_{h,i}^{}}{{z}_{*}}\Bigg)\Bigg], \end{aligned}$$ (4)
      $$ {\theta }_{{\rm{sat}},i}=0.489-0.00126\times {{P}_{{\rm{s}},i}}, $$ (5)
      $$ {B}_{i}=2.91+0.159\times {{P}_{{\rm{c}},i}}, $$ (6)
      $$ {\psi }_{{\rm{sat}},i}=-10.0\times {10}^{1.88-0.0131\times {{P}_{{\rm{s}},i}}}, $$ (7)

      where the length scale $ {{z}}_{\mathrm{*}} $ is 0.5 m, $ P_{{\rm s},{i}} $ and $ P_{{\rm c},{i}} $ are the sand and clay proportions in soil, and $ z_{{\rm h},{i}} $ is the interface between two adjacent soil layers i.

      The FAO-56 Penman–Monteith equation (Allen, 2000) is used to calculate evapotranspiration; the schematic diagram in Fig. 2 shows the numerical scheme, which is identical to that in CLM.

      Figure 2.  Schematic diagram for numerical scheme (Lawrence et al., 2018; Fu et al., 2022).

      In this study, we analyze the effects of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, and B on soil moisture estimation, so we only use the 1-D Richards equation in the experiment. In the following sections, the model is the 1-D Richards equation.

    • A novel data assimilation method, the unscented weighted ensemble Kalman filter (UWEnKF), was introduced by Fu et al. (2020). The well performance of UWEnKF has been demonstrated through soil moisture assimilation (Fu et al., 2020, 2022). In UWEnKF, the ensemble members $ {{X}}_{{i}}\; ({i}=0,\cdots ,2{n}{N}) $ are symmetric about the expectation value $ \bar{X} $ and are defined as follows:

      $$\begin{aligned} &{X}_{0}={\bar X}\\ &{X_i} = \left\{ {\begin{array}{*{20}{c}} {\bar X + {q_{jj}}{{\left( {\sqrt {(n + \lambda ){\mathop{\rm abs}\nolimits} \left( {{P_x}} \right)} } \right)}_j}}&\begin{array}{l} i = 1, \cdots ,nN\\ j = 1, \cdots ,n \end{array},\\ {}&{}\\ {\bar X - {q_{jj}}{{\left( {\sqrt {(n + \lambda ){\mathop{\rm abs}\nolimits} \left( {{P_x}} \right)} } \right)}_j}}&\begin{array}{l} i = nN + 1, \cdots ,2nN\\ j = 1, \cdots ,N \end{array}, \end{array}} \right.\end{aligned}$$ (8)

      where ${q}_{{j}{j}} \;({j}{j}=1,\cdots ,{N})$ conforms to N(0, $ {P}_{x} $) and is randomly generated errors, $ n $ is the state variable dimension, N is the generated error number, and $ \lambda $ is an adjustable scaling parameter (Fu et al., 2020). UWEnKF includes two steps: forecasting and updating.

      (1) Forecasting. The state variable with ensemble members ${\bar X}_{{t}|{t}-1, { }{i}}$ (soil moisture $ \theta $ in this study) at time $ t $ can be predicted based on $ {{X}}_{{t}-1,{i}} $ at time $ {t}-1 $ using the following equation:

      $$ \hspace{-25pt} {\bar{X}}_{t|t-1,i}=F\left({X}_{t-1,i},\;{v}_{t-1,i}\right){v}_{t-1,i}~N(0,Q) ,$$ (9)

      where F is the state function, here is the 1-D Richards equation [Eq. (1)]; $ {{v}}_{{t}} $ is the state noise.

      (2) Updating. Each predicted state value is updated by the following equation:

      $$ \hspace{-65pt} {X}_{t,i}={\bar{X}}_{t|t-1,i}+{K}_{t}({Y}_{t,i}-{\bar{Y}}_{t,i}), $$ (10)

      where $ {{Y}}_{{t},{i}} $ is the generated observation ensemble. Kalman gain $ {{K}}_{{t}} $ is calculated as follows:

      $$\hspace{-12pt}\quad\quad \ {K}_{t}={P}_{{XY}_{t}}{({P}_{{Y}_{t}}+R)}^{-1}, $$ (11)
      $${P}_{{XY}_{t}}=A(I.\times {W}^{T}){S}^{T}, $$ (12)
      $${P}_{{Y}_{t}}=S(I.\times {W}^{T}){S}^{T} ,$$ (13)
      $$S=[{\bar{Y}}_{t,\mathrm{ }0}-{\bar{Y}}_{t},\cdots ,{\bar{Y}}_{t,\mathrm{ }2nN}-{\bar{Y}}_{t}], $$ (14)
      $$ A=[{\bar{X}}_{t|t-1,\mathrm{ }0}-{\bar{X}}_{t|t-1},\cdots ,{\bar{X}}_{t|t-1,\mathrm{ }2nN}-{\bar{X}}_{t|t-1}], $$ (15)
      $$ {\bar{X}}_{t|t-1}=\sum _{i=0}^{2nN}{W}_{t,i}{\bar{X}}_{t|t-1,i} ,$$ (16)
      $$ {W}_{t,i}=\frac{\left(2nN+1\right){\omega }_{t,i}-{\rm{fix}}[\left(2nN+1\right){\omega }_{t,i}]}{2nN+1-\sum _{i=0}^{2nN}{m}_{i}}, $$ (17)
      $$ {\omega }_{t,i}=\frac{\mathrm{e}\mathrm{x}\mathrm{p}(-0.5/R){[{Y}_{t}-H({\bar X}_{t|t-1,i})]}^{2}}{\sum _{i=0}^{2nN}\mathrm{e}\mathrm{x}\mathrm{p}(-0.5/R){[{Y}_{t}-H({\bar{X}}_{t|t-1,i})]}^{2}}, $$ (18)
      $$ {\stackrel-{Y}}_{t}=\sum _{i=0}^{2nN}{W}_{t,i}{\bar{Y}}_{t,i} ,$$ (19)
      $$ {\bar{Y}}_{t,i}=H\left({\bar{X}}_{t|t-1,i},{u}_{t,i}\right){u}_{t,i}~N(0,R) ,$$ (20)

      where H is the observation function, which links states and observations; $ {{u}}_{{t}} $ is the measurement noise; I is the identity matrix, $ {W}=[{{W}}_{{t},0},\cdots ,{{W}}_{{t},2{n}{N}}] $, and $ {I}.\times {{W}}^{{T}} $ is a diagonal matrix; ${{m}}_{{i}}={\rm fix}\left[\left(2{n}{N}+1\right){{\omega }}_{{t},{i}}\right]$; Q and R are the model and the observation error covariance matrix, respectively.

      The updated state variable at time t is:

      $$ {X}_{t}^{\rm up}=\sum _{i=0}^{2nN}{W}_{t,i}{X}_{t,i}, $$ (21)
      $$ E=({X}_{t,0}-{X}_{t}^{\rm up},\cdots ,{X}_{t,2nN}-{X}_{t}^{\rm up}) ,$$ (22)
      $$ {P}_{{X}_{t}}=E(I.\times {W}^{T}){E}^{T}.$$ (23)
    • The genetic algorithm (GA) is a very general robust optimization algorithm (Arifovic, 1994; Bies et al., 2006; Yu et al., 2014) based on the Darwinian evolutionary theory. GA has no limitations on derivation and function continuity; it is inherent parallel and can be globally optimized. GA can probabilistically determine and guide the optimized search space automatically, and adaptively adjusts the search without specific rules. The GA process is as follows:

      (1) Initialization: generate M individuals randomly to be the initial population P(0) at time t = 0, and set the maximum genetic times (number of generations).

      (2) Individual evaluation: calculate the fitness of each individual in the population P(t) at each generation.

      (3) Reproduction: select each individual based on fitness and reproduce the individual to the next generation of the population; the aim of this step is to propagate the optimized individuals to the next generation.

      (4) Cross over: different individuals may undergo cross over and the cross over individuals are added into the next generation.

      (5) Mutation: select a variant individual and mutate it, and then propagate the generated individual into the next generation.

      The population P(t + 1) can be obtained after reproduction, cross over and mutation operations have been performed on P(t).

      (6) Termination: if t = T, the individual with maximum fitness obtained in the evolution process is output as the optimal solution.

      More details of GA are given at http://www.obitko.com/tutorials/genetic-algorithms/index.php, and the flowchart is given in Yu et al. (2014).

    • The 1-D Richards equation is run from 31 July (day 212) to 13 October 2017 (day 304). We firstly analyze the effects of soil hydraulic properties or parameters ($ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, and B) on soil moisture estimation. They are set to values with a step equal to 1% of their interval length (maximum value minus minimum value) for each independent model run. Secondly, the soil hydraulic properties are optimized by using GA from 31 July to 31 August 2017. The assimilation experiments are then conducted by using the optimized soil hydraulic properties for 61 day beginning on 1 September 2017 (day 244).

      Soil moisture observations at four soil depths (5, 20, 50, and 80 cm) in ELBARA are used, and the soil layers are redistributed. Based on the work of Fu et al. (2022), we used basic soil properties (clay, silt, sand) at depth 40 cm in place of those at depth 50 cm in this study. Table 1 shows that $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ is observed only at soil depths 10, 20, 40, and 80 cm, whereas Section 3.1 shows that $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ should be measured at the interface of two adjacent soil layers in this study. Thus, we assume that the value of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ at the interface between soil depths 5 and 20 cm uses the observed value at 10 cm; the value of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ at the interface between 20- and 50-cm depths uses the observed value at 20 cm; the value of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ at the interface between 50- and 80-cm depths uses the observed value at 40 cm; and the value of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ at the interface between 80 cm and low boundary uses the observed value at 80 cm.

      Note that soil moisture simulation or simulated soil moisture refers to the 1-D Richards equation [i.e., Eq. (1)], and the soil moisture assimilation or assimilated soil moisture refers to the data assimilation system [i.e., Eqs. (8)–(23)] in this study.

    • The root-mean-square error (RMSE) and skill score (SS) (Murphy, 1996) are used to evaluate the effects of soil hydraulic properties or parameters on soil moisture estimation and determine how well UWEnKF increases simulation accuracy:

      $$ {\rm{RMSE}} \_{\rm{sim}}=\sqrt{\frac{1}{N}\sum _{t=1}^{N}{({X}_{{\rm sim},t}-{X}_{{\rm obs},t})}^{2}},$$ (24)
      $$ {\rm{RMSE}}\_{\rm{assi}}=\sqrt{\frac{1}{N}\sum _{t=1}^{N}{({X}_{{\rm assi},t}-{X}_{{\rm obs},t})}^{2}} ,$$ (25)
      $$ {\rm{SS}}=1-\frac{\sum _{t=1}^{N}{({X}_{{\rm assi},t}-{X}_{{\rm obs},t})}^{2}}{\sum _{t=1}^{N}{({X}_{{\rm simu},t}-{X}_{{\rm obs},t})}^{2}} ,$$ (26)

      where $ {{X}}_{\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{i},{t}} $ and $ {{X}}_{\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{u},{t}} $ are the soil moisture assimilations and simulations at time t, respectively, $ {{X}}_{\mathrm{o}\mathrm{b}\mathrm{s},t} $ is soil moisture observations at time t, and N is the total number of time steps.

      If SS is positive and SS ≤ 1, data assimilation (DA) performs well; if SS = 1, DA performs perfectly; if SS = 0, DA is ineffective.

    4.   Results and discussion
    • In analyzing the effects of soil hydraulic properties or parameters on soil moisture estimation, we first use Eqs. (4)–(7) to calculate the ranges of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, and B based on the observed values of basic soil properties shown in Table 1, and their calculated values are shown in Table 2.

      Depth (cm)$ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (m3 m−3)${{K} }_{\mathrm{s}\mathrm{a}\mathrm{t} }$ (mm s−1)$ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (mm)B
      minmaxminmaxminmaxminmax
      50.48850.48887.97 × 10−48.05 × 10−4−755.28−749.172.92382.9275
      100.48840.48886.86 × 10−46.94 × 10−4−755.28−747.772.92342.9279
      200.48840.48885.09 × 10−45.14 × 10−4−754.70−748.272.92502.9273
      400.48830.48882.79 × 10−42.83 × 10−4−754.51−746.522.92432.9284
      800.48820.48881.26 × 10−41.28 × 10−4−754.23−744.232.91872.9321
      Note: “↓” is the saturated hydraulic conductivity at the downward interface of two adjacent layers.

      Table 2.  The ranges of soil hydraulic parameters calculated using Eqs. (4)–(7)

    • Soil moisture (SM) simulations obtained by the 1-D Richards equation [Eq. (1)] using the observed or calculated values of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (Tables 12) are shown in Fig. 3. In this figure, the other soil hydraulic properties $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, and B are calculated by using Eqs. (4) and (6)–(7) based on the mean values of observed basic soil properties shown in Table 1. Figure 3 shows that SM simulations differed as $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ varied. The purple shaded SM simulations are small because the range of calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ is small. SM simulations using observed $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ are mostly greater than those using calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ for the upper two soil layers. In the third and bottom layers, SM simulations with calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (purple area) are sometimes within the gray shaded area, and sometimes not. This suggests that using observed $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ for the bottom two soil layers may result in better SM simulation than using calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, but not for upper two soil layers. RMSE between the simulated and observed SM with varying $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ is shown in Fig. 4. The first column shows RMSE for observed $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and the second column shows RMSE for calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $. It can be seen that RMSE increases as observed $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ increased for three soil layers (first, second, and bottom layers), but not for the third soil layer. This indicates that better SM simulations can be obtained with smaller observed $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ for the three soil layers and a reasonable observed value of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ for the other (third) soil layer. There is no clear change in RMSE when using calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ because the change in calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ is small.

      Figure 3.  Variations of soil moisture simulations and observations in different depths. The gray shaded area (Simulation range) shows the range of an open loop with observed values of $ {\mathrm{\theta }}_{\mathrm{sat}} $ varied; the purple shaded area (Simulation-cal range) shows the range of an open loop with calculated values of ${\rm{\theta }}_{\rm sat}$ varied using Eq. (5); the purple area appears to be a line, because the range of calculated $ {\mathrm{\theta }}_{\mathrm{sat}} $ is small, which leads to a small difference in soil moisture simulations for different calculated $ {\mathrm{\theta }}_{\mathrm{sat}} $; ${\rm{\theta }}_{{\rm sat}{{\text -}{{\rm{min}}}}}$ and ${\mathrm{\theta }}_{{\mathrm{sat}}{\text-}{\rm max} }$ are the soil moisture simulations for the smallest and largest observed values of $ {\mathrm{\theta }}_{\mathrm{sat}} $.

      Figure 4.  RMSE between the soil moisture simulation and observation with different values of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $. The left column shows RMSE with observed $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ varied; the right column shows RMSE with calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in Eq. (5), and RMSE seems a constant because of the small change in calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $.

      Figure 5 shows soil moisture (SM) simulations using the observed or calculated values of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (Tables 12), and Fig. 6 shows RMSE as observed and calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ varied. The values of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, and B are calculated by using the equations given in Section 3. Figure 5 shows that the purple areas are close to or included in the gray areas, and that there is little change (purple area) in SM simulations using calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $. The SM simulations using the smallest and largest observed values of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in Fig. 5 suggest that the change in RMSE is not linear as observed $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ increased, which can be seen in the first column of Fig. 6. RMSE in the second column of Fig. 6 decreases as calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ increased in the upper three soil layers, and RMSE initially decreases and then becomes stable in the bottom soil layer. The RMSE results imply that a reasonable value of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ among the observed intervals can produce better SM estimation.

      Figure 5.  As in Fig. 3, but for $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $.

      Figure 6.  RMSE between soil moisture simulation and observation for various ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$. The left column shows RMSE for varied observed $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $; the right column shows RMSE for varied calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in Eq. (4).

      Simulated soil moisture using calculated values of $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and B are shown in Fig. 7. Other soil hydraulic properties or parameters are calculated by using the mean values of observed basic soil properties given in Table 1. The figure shows that the gray area is small for both $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and B, which is due to the small ranges of calculated $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and B.

      Figure 7.  Variations of soil moisture simulations and observations. The gray shaded area (simulation-cal range) shows the range of an open loop with various calculated values of $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in the left column of Eq. (7) and various calculated values of B in the right column of Eq. (6).

    • Only calculated values of $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and B are available, and their ranges are small (Table 2), which lead to only small changes in soil moisture simulations (Fig. 7). We therefore do not optimize $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ or B, and instead calculated them using the mean values of observed basic soil properties (Table 1) for the following experiments.

      The variable Ksat at each interface of two adjacent soil layers is optimized by GA based on the range of each layer (Table 1) from 31 July (day 212) to 31 August 2017 (day 243). The ranges of Ksat for the top to bottom soil interfaces are respectively 1.14 × 10−3 to 8.53 × 10−3, 7.44 × 10−4 to 6.27 × 10−3, 1.57 × 10−4 to 7.33 × 10−4, and 2.67 × 10−4 to 2.63 × 10−2 mm s−1. We run the GA independently several times with 100 genetic times (number of generations), and values of Ksat converge to the same optimized Ksat values. Figure 8 shows one optimized process, and the optimized values of Ksat are respectively 0.00853, 0.00627, 0.000733, and 0.000267 mm s−1 for the four interfaces.

      Figure 8.  Optimized Ksat with different ranges depending on the values for four soil interfaces (Table 1): Ksat ∈ (1.14 × 10−3, 8.53 × 10−3) mm s−1 for interface 1, Ksat ∈ (7.44 × 10−4, 6.27 × 10−3) mm s−1 for interface 2, Ksat ∈ (1.57 × 10−4, 7.33 × 10−4) mm s−1 for interface 3, and Ksat ∈ (2.67 × 10−4, 2.63 × 10−2) mm s−1 for interface 4.

    • Only the optimized values of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ are used in this assimilation experiment. Values of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, and B are calculated using the equations in Section 3. The model is validated by using the optimized values of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ before the assimilation experiment. Figures 9a1–a4 show the results of using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ from days 244 to 304, and Figs. 9b1−b4 show the results of calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (calculated the mean values of observed basic soil properties in Table 1). It is noted that the simulated results using the optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ well reflected soil moisture changes and are closer to the observed values than those by calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $. RMSE between soil moisture simulations and observations in Table 3 also indicates that the 1-D Richards equation performs well using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $.

      Figure 9.  Soil moisture assimilation using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (left column; a1–a4) and calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (right column; b1–b4) with an assimilation interval 12 ∆t.

      Depth (cm)Optimized ${ {K} }_{\mathrm{s}\mathrm{a}\mathrm{t} }$Calculated (without optimization) ${ {K} }_{\mathrm{s}\mathrm{a}\mathrm{t} }$
      RMSE (m3 m−3)AE (m3 m−3)SSRMSE (m3 m−3)AE (m3 m−3)SS
      SimulationAssimilationSimulationAssimilation
      50.02810.02150.00660.41200.04830.04260.00570.2244
      200.02320.01480.00840.59110.03960.03200.00760.3469
      500.02610.01610.01000.61780.03260.02160.01100.5615
      800.03940.02600.01340.56420.05220.04230.00990.3425
      Note: “AE” is the absolute error between RMSE for simulation and RMSE for assimilation; calculated Ksat is obtained using Eq. (4) according to the observed mean values of basic soil properties (Table 1).

      Table 3.  RMSE and SS for simulation and assimilation using GA-optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ with an assimilation interval 12 ∆t

      After verification, soil moisture assimilation experiments with optimized and calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ are conducted. Ensemble size is set to 16,001 based on the work of Fu et al. (2020). It is difficult to determine the explicit model and observation error statistics (Han and Li, 2008) for data assimilation in practice, so we assume that those errors are known in advance for perfect in-situ observations and refer to those in Fu et al. (2022).

      Assimilated soil moisture (SM) results [obtained by Eqs. (8)–(23)] with a 12-∆t assimilation interval (here ∆t = 1 h is the simulation time step) are shown in Fig. 9. It is noted that the simulated SM values are not as close to observed values as assimilated values whether optimized or calculated (without optimization) $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ is used in assimilation experiment. SM assimilation using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ produced values that are little different from observed values, in contrast to assimilation by calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $. RMSE (Table 3) shows that UWEnKF performs well whether using calculated or optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $. The absolute error (AE) between RMSE for simulations and for assimilations shows that UWEnKF with optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ provides more accurate SM estimation than with calculated $ { {K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $. SS for assimilation by optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ is significantly larger than for by calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, which suggests that UWEnKF performs better when model performance is better.

      Figure 10 shows the soil moisture (SM) assimilations with daily assimilation (24 ∆t assimilation interval). The figure shows that UWEnKF increased the accuracy of SM simulations even when assimilation frequency decreased. We also note that SM assimilations using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ are closer to observations than using calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ because better SM simulations are obtained by using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $.

      Figure 10.  Soil moisture assimilation using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (left column; a1–a4) and calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $; (right column; b1–b4) with 24 ∆t assimilation interval.

    • Figure 5 shows that the soil moisture simulations using calculated Ksat (purple area) are close to or included in those using observed Ksat (gray area), and the first column of Fig. 6 shows that RMSE does not change linearly as observed Ksat increases. We therefore used GA to optimize Ksat from the same range, 1.57 × 10−4 mm s−1 to 2.63 × 10−2 mm s−1 for every soil layer with several independent runs.

      Figure 11 shows the optimization of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in four independent runs, each with 1000 genetic times (number of generations). The optimized values of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (Fig. 11) for the four soil layers are all respectively 0.00853, 0.00627, 0.000733, and 0.000267 mm s−1 in the four independent runs. The optimized values of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ here are the same as in Fig. 8, but the optimization processes differs. Figure 11 shows that optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ may be obtained within 100, 500, 700, 900, or even more genetic times. There is thus considerable uncertainty around the number of generations required for optimization. This is because the same range (1.57 × 10−4 to 2.63 × 10−2 mm s−1) for all soil layers is larger than the individual ranges for each layer shown in Fig. 8, which increases the randomness of initial values used in GA. We therefore need to increase the genetic times (number of generations) to ensure optimized values when the optimization range increases.

      Figure 11.  Optimized ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$ for the same range 1.57 × 10−4 to 2.63 × 10−2 mm s−1 at the four interfaces between two adjacent soil layers, i.e., ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$ ∈ (1.57 × 10−4, 2.63 × 10−2) mm s−1 for interfaces 1 to 4.

      The soil texture at the Maqu SMST monitoring network includes loam, sandy loam, and silt loam at different soil depths. This suggests that $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ may be optimized within a certain range for other sites without the need for observed $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ values but with only knowledge of the soil texture and the range of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (for example, 1.57 × 10−4 to 2.63 × 10−2 mm s−1 at Maqu for loam soil texture).

    • The gray area in Fig. 3 shows that if observed $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ is selected from the individual range of each layer, soil moisture simulations using observed $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (gray area) are less accurate than those using calculated $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ (purple area), especially in the upper two soil layers. Thus, we decide not to optimize $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ from the ranges of individual layers, but from the overall range (0.37 to 0.85 m3 m−3) for the entire soil depth. To ensure reasonable optimized values of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ for the entire soil depth, we assume that an individual-layer optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ would decrease from top layer to bottom layer (i.e., $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t},\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}1}\geqslant {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t},\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}2}\geqslant {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t},\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}3}\geqslant $${\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t},\mathrm{l}\mathrm{a}\mathrm{y}\mathrm{e}\mathrm{r}4} $). Figure 12 shows optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ from day 212 to day 243 with 1000 genetic times (number of generations), and optimized values of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ for each soil layers are, in descending order, 0.4452, 0.4452, 0.4452, and 0.4452 m3 m−3.

      Figure 12.  Optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ with the range 0.37 to 0.85 m3 m−3 by GA for four soil layers.

      Soil moisture (SM) assimilations using optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ with an assimilation interval 12 ∆t are shown in Fig. 13. Comparison of Fig. 13 and Figs. 9b1–b4 shows that using optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in the assimilation system increased the accuracy of SM estimations, as indicated by RMSE (Tables 3 and 4). Using optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ provides better SM estimations, but optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ is not consistent to the ranges of measured values (Table 1) for the corresponding soil layers; this may reduce the utility of the optimized results in some extent.

      Figure 13.  Soil moisture assimilation using optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ with assimilation interval 12 ∆t.

      Depth (cm)Optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $Optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and ${ {K} }_{\mathrm{s}\mathrm{a}\mathrm{t} }$
      RMSE (m3 m−3)SSRMSE (m3 m−3)SS
      SimulationAssimilationSimulationAssimilation
      50.02730.02470.18390.01410.01340.0914
      200.01920.01500.38650.01030.00920.2074
      500.01640.00950.66520.01080.00830.4144
      800.03580.02780.39610.02250.01620.4799

      Table 4.  RMSE and SS for simulation and assimilation using GA-optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$ with assimilation interval 12 ∆t

    • The results of using both above optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in the assimilation system with 12 ∆t assimilation interval are shown in Fig. 14. RMSE and SS are shown in Table 4. Figures 9a1–a4, 13, and 14 show that the soil moisture (SM) estimations are more accurate using both optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ than when using either of them singly. UWEnKF still improves the accuracy of simulated SM according to SS, but not significantly over the results of using only optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ or optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $. This is because the 1-D Richards equation performs better than when using only optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ or optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $.

      Figure 14.  Soil moisture assimilation using optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and optimized ${{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}}$ with an assimilation interval 12 ∆t.

    5.   Conclusions
    • The effects of $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, and B on soil moisture (SM) estimation are investigated by using the 1-D Richards equation with data from ELBARA at the Maqu SMST monitoring network in SRYR, China. Before assimilation, GA is used to optimize the soil hydraulic properties, and then, SM assimilation experiments using optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ and $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ are conducted.

      (1) Based on the solving numerical scheme for the 1-D Richards equation in Section 3.1, and the preceding analysis and discussion, $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\psi }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, and B all affect the SM estimation. RMSE for SM estimation changes linearly for some soil layers when $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ varies, but this is not the case when $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ varies.

      (2) According to the above numerical experiment, more accurate SM estimations may be obtained by using GA to optimize $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ based on its observation. However, the optimized $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ for all layers may not be consistent with the ranges of measured $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ for individual layers, which may impact its utility. For $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, the model performance improves significantly using GA for optimization according to its observation, and UWEnKF performs better with optimized $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ than with calculated $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ in SM assimilation.

      (3) Based on the analysis in Sections 4.2 and 4.4, when individual ranges of observed $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ are used for each soil layer, $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ can be optimized by using GA with relatively few genetic times (e.g., 100). However, if the range of observed $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ increases, the uncertainty of genetic times required for GA to optimize $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ increases. Thus, if we use only the range of $ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $ for the entire soil depth, we need to substantially increase the genetic times required to ensure optimization, which increases computational cost.

      Overall, optimizing soil hydraulic properties or parameters using GA increases the accuracy of model estimations. UWEnKF is effective and practical for increasing the accuracy of SM simulations.

      In this study, we consider the effects of soil hydraulic properties on soil moisture estimation when using the solving numerical scheme for 1-D Richards equation, which adopted in CLM, not use CLM to simulate soil moisture directly. However, despite that the 1-D Richards equation is solved with four soil layers in our study, based on the four layers’ observed soil hydraulic properties ($ {{K}}_{\mathrm{s}\mathrm{a}\mathrm{t}} $, $ {\mathrm{\theta }}_{\mathrm{s}\mathrm{a}\mathrm{t}} $), the conclusions maybe have some references for some land surface models, because 1-D Richards equation has been used to simulate soil moisture in some of them. Thus, based on the above analysis, further research and field experiments are required to find suitable ranges of soil hydraulic properties or parameters for other soil textures (e.g., clay, silt clay, and sand clay), and to optimize them to increase model predictive accuracy for different soil textures over large areas. Additionally, the influence of soil moisture properties on soil moisture estimation with different solving numerical schemes for 1-D Richards equation with multi-layers would be investigated in future, and a numerical experiment in other areas with long period observations will be conducted to address the study limitation in single site.

Reference (49)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return