Advances in Research on the ITCZ: Mean Position, Model Bias, and Anthropogenic Aerosol Influences

赤道辐合带相关研究进展:平均位置、模式偏差和人为气溶胶影响

+ Author Affiliations + Find other works by these authors
Funds: 
Supported by the National Natural Science Foundation of China (42005128) and National Key Research and Development Program of China (2017YFA0603502)

PDF

  • The zonal-mean position of the intertropical convergence zone (ITCZ) and its shift in the meridional direction significantly influence both the tropical and even global climate. This work reviews three aspects of the progress in ITCZ-relevant research: 1) the mechanism behind the asymmetry of the ITCZ annual- and zonal-mean positions relative to the equator; 2) causes of the double-ITCZ problem (pervasive in climate models) and the efforts to solve it; and 3) the physical mechanisms by which anthropogenic aerosols affect the location of the zonal-mean ITCZ. According to recent studies, the north-of-the-equator location of the annual- and zonal-mean ITCZ is mainly driven by the cross-equatorial energy transports in the ocean, induced by the Atlantic overturning circulation. A quantitative relationship between the ITCZ shift and the anomalous cross-equatorial energy transport in the atmosphere has been found. Presently, the double-ITCZ problem is still the most common and pronounced bias in tropical precipitation simulations with climate models. Recently, some studies have found that simply correcting the biases in hemispheric energy contrast does not improve the simulation of the ITCZ with climate models; whereas others have found that improving model resolutions and convective parameterizations in climate models, such as entrainment rate, rain-droplet re-evaporation, and convection triggering function, can alleviate the double-ITCZ bias. Therefore, it seems that the double-ITCZ problem in climate models is rooted in the complex physics of the models, which is not yet well-understood. In addition, anthropogenic aerosols are suggested to be able to induce meridional shifts of the ITCZ, but through various physical mechanisms. Absorbing aerosols like black carbon influence the ITCZ position basically via instantaneous absorption of shortwave radiation in the atmosphere, whereas scattering aerosols like sulfate affect the location of the ITCZ through the cloud lifetime effect and the subsequent response of surface evaporation.
    本文从三个方面回顾了赤道辐合带(ITCZ)的相关研究进展。(1)ITCZ位移的原因。ITCZ年平均与纬向平均位置均位于赤道以北,这主要是由大西洋翻转环流引起的海洋越赤道能量传输驱动的。ITCZ位移与大气中异常越赤道能量传输存在定量关系。(2)双赤道辐合带(Double-ITCZ)问题(即气候模式中普遍存在的热带降水模拟偏差)的成因和解决途径。有研究发现,改进模式的分辨率和对流参数,如夹卷率、雨滴再蒸发和对流触发机制等可以缓解Double-ITCZ偏差。Double-ITCZ问题可能根源于气候模式中物理机制的不完善(当今大部分气候模式仍然没有解决这一问题)。(3)人为气溶胶影响纬向平均ITCZ南北位置的物理机制。黑碳等吸收性气溶胶影响ITCZ位置的原因在于其对大气短波辐射的瞬时吸收,而硫酸盐等散射性气溶胶则通过云生命时间效应引起的蒸发响应来影响ITCZ的位置。
  • Fig.  2.   Schematic diagram of the relationship between the atmospheric cross-equatorial energy (moisture) transport and the position of the ITCZ.

    Fig.  1.   The climatological mean position of the intertropical convergence zone (ITCZ) in each month (black line: global; red line: Indo–western Pacific, 50°E–150°W; cyan line: eastern Pacific, 150°–77.5°W; green line: Atlantic, 50°W–0). Data are from the Global Precipitation Climatology Project (GPCP) monthly mean precipitation from 1981 to 2010, and the ITCZ position at each longitude is represented by the precipitation centroid between 15°S and 15°N. Similar plots denoting the seasonal cycle of the ITCZ position can be found in many previous studies, e.g., Voigt et al. (2016).

    Fig.  3.   Long-term annual-mean precipitation (mm day−1) over the tropics (30°S–30°N) from (a) the Tropical Rainfall Measuring Mission (TRMM) satellite observation, and (b) the phase 6 of the Coupled Model Intercomparison Project (CMIP6) multi-model ensemble mean. (c) Long-term annual-mean precipitation bias (model − observation; mm day−1) over the tropics (30°S–30°N). The black dashed boxes in (c) show where the south branch of the double-ITCZ bias is located in model results. Data are from the annual-mean precipitation data of TRMM3b43 from 1998 to 2010, and the historical run of CMIP6 from 1981 to 2010. Similar plots denoting the double-ITCZ bias can be found in many previous studies, e.g., Samanta et al. (2019) and Tian and Dong (2020).

    Fig.  4.   Schematic plots of the physical mechanisms by which (a) black carbon and (b) sulfate aerosols impact the position of the ITCZ, originating from Zhao and Suzuki (2019). In the plots, cross-equatorial energy and moisture transports are both anomalous terms, and evaporation is the interhemispheric contrast of anomalous terms (Southern Hemisphere − Northern Hemisphere). Red fonts mark the most important initial forcing in the physical mechanisms of the ITCZ displacement caused by the two types of aerosols.

  • Adam, O., T. Bischoff, and T. Schneider, 2016a: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 3219–3230. doi: 10.1175/JCLI-D-15-0512.1
    Adam, O., T. Bischoff, and T. Schneider, 2016b: Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Climate, 29, 7281–7293. doi: 10.1175/JCLI-D-15-0710.1
    Afargan-Gerstman, H., and O. Adam, 2020: Nonlinear damping of ITCZ migrations due to Ekman ocean energy transport. Geophys. Res. Lett., 47, e2019GL086445. doi: 10.1029/2019GL086445
    Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractio-nal cloudiness. Science, 245, 1227–1230. doi: 10.1126/science.245.4923.1227
    Allen, R. J., A. T. Evan, and B. B. B. Booth, 2015: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Climate, 28, 8219–8246. doi: 10.1175/JCLI-D-15-0148.1
    Avery, M. A., D. J. Westberg, H. E. Fuelberg, et al., 2001: Chemical transport across the ITCZ in the central Pacific during an El Niño–Southern Oscillation cold phase event in March–April 1999. J. Geophys. Res. Atmos., 106, 32,539–32,553. doi: 10.1029/2001JD000728
    Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 3383–3403. doi: 10.1175/JAS3791.1
    Bellucci, A., S. Gualdi, and A. Navarra, 2010: The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. J. Climate, 23, 1127–1145. doi: 10.1175/2009JCLI3002.1
    Biasutti, M., and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett., 33, L11706. doi: 10.1029/2006GL026067
    Biasutti, M., and A. Voigt, 2020: Seasonal and CO2-induced shifts of the ITCZ: Testing energetic controls in idealized simulations with comprehensive models. J. Climate, 33, 2853–2870. doi: 10.1175/JCLI-D-19-0602.1
    Biasutti, M., A. Voigt, W. R. Boos, et al., 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci., 11, 392–400. doi: 10.1038/s41561-018-0137-1
    Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 4937–4951. doi: 10.1175/JCLI-D-13-00650.1
    Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Climate, 29, 2997–3013. doi: 10.1175/JCLI-D-15-0328.1
    Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502–505. doi: 10.1126/science.1204994
    Bony, S., J.-L. Dufresne, H. Le Treut, et al., 2004: On dynamic and thermodynamic components of cloud changes. Climate Dyn., 22, 71–86. doi: 10.1007/s00382-003-0369-6
    Boos, W. R., and R. L. Korty, 2016: Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci., 9, 892–897. doi: 10.1038/ngeo2833
    Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702. doi: 10.1029/2005GL024546
    Cheng, H., A. Sinha, X. F. Wang, et al., 2012: The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dyn., 39, 1045–1062. doi: 10.1007/s00382-012-1363-7
    Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dyn., 25, 477–496. doi: 10.1007/s00382-005-0040-5
    Chikira, M., 2010: A cumulus parameterization with state-dependent entrainment rate. Part II: Impact on climatology in a general circulation model. J. Atmos. Sci., 67, 2194–2211. doi: 10.1175/2010JAS3317.1
    Chung, E.-S., and B. J. Soden, 2017: Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci., 10, 566–571. doi: 10.1038/ngeo2988
    Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res. Atmos., 110, D11102. doi: 10.1029/2004JD005441
    Donohoe, A., J. Marshall, D. Ferreira, et al., 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 3597–3618. doi: 10.1175/JCLI-D-12-00467.1
    Donohoe, A., J. Marshall, D. Ferreira, et al., 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 3377–3392. doi: 10.1175/JCLI-D-13-00499.1
    Dunne, J. P., L. W. Horowitz, A. J. Adcroft, et al., 2020: The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst., 12, e2019MS002015. doi: 10.1029/2019MS002015
    Frierson, D. M. W., Y.-T. Hwang, N. S. Fučkar, et al., 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940–944. doi: 10.1038/ngeo1987
    Garrett, T. J., and C. F. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787–789. doi: 10.1038/nature04636
    Garrett, T. J., C. F. Zhao, and P. C. Novelli, 2010: Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol. Tellus B Chem. Phys. Meteor., 62, 190–196. doi: 10.1111/j.1600-0889.2010.00453.x
    Green, B., and J. Marshall, 2017: Coupling of trade winds with ocean circulation damps ITCZ shifts. J. Climate, 30, 4395–4411. doi: 10.1175/JCLI-D-16-0818.1
    Green, B., J. Marshall, and J.-M. Campin, 2019: The ‘sticky’ ITCZ: ocean-moderated ITCZ shifts. Climate Dyn., 53, 1–19. doi: 10.1007/s00382-019-04623-5
    Hawcroft, M., J. M. Haywood, M. Collins, et al., 2017: Southern Ocean albedo, inter-hemispheric energy transports and the double ITCZ: global impacts of biases in a coupled model. Climate Dyn., 48, 2279–2295. doi: 10.1007/s00382-016-3205-5
    Hirota, N., and Y. N. Takayabu, 2013: Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Climate Dyn., 41, 2909–2920. doi: 10.1007/s00382-013-1839-0
    Hu, Q., and S. Feng, 2002: Interannual rainfall variations in the North American summer monsoon region: 1900–98. J. Climate, 15, 1189–1202. doi: 10.1175/1520-0442(2002)015<1189:IRVITN>2.0.CO;2
    Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 4935–4940. doi: 10.1073/pnas.1213302110
    Hwang, Y.-T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 2845–2850. doi: 10.1002/grl.50502
    IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Pa-nel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
    Kang, S. M., I. M. Held, D. M. W. Frierson, et al., 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 3521–3532. doi: 10.1175/2007JCLI2146.1
    Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 2812–2827. doi: 10.1175/2009JAS2924.1
    Kang, S. M., R. Seager, D. M. W. Frierson, et al., 2015: Croll revisited: Why is the northern hemisphere warmer than the southern hemisphere? Climate Dyn., 44, 1457–1472. doi: 10.1007/s00382-014-2147-z
    Kang, S. M., Y. Shin, and F. Codron, 2018a: The partitioning of poleward energy transport response between the atmosphere and Ekman flux to prescribed surface forcing in a simplified GCM. Geosci. Lett., 5, 22. doi: 10.1186/s40562-018-0124-9
    Kang, S. M., Y. Shin, and S.-P. Xie, 2018b: Extratropical forcing and tropical rainfall distribution: energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172. doi: 10.1038/s41612-017-0004-6
    Kay, J. E., C. Wall, V. Yettella, et al., 2016: Global climate impacts of fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM). J. Climate, 29, 4617–4636. doi: 10.1175/JCLI-D-15-0358.1
    Krishnamurti, T. N., L. Stefanova, and V. Misra, 2013: Tropical Meteorology: An Introduction. Springer, New York, NY, USA, 423 pp, doi: 10.1007/978-1-4614-7409-8.
    Kristiansen, N. I., A. Stohl, D. J. L. Olivié, et al., 2016: Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. Atmos. Chem. Phys., 16, 3525–3561. doi: 10.5194/acp-16-3525-2016
    Landu, K., L. R. Leung, S. Hagos, et al., 2014: The dependence of ITCZ structure on model resolution and dynamical core in aquaplanet simulations. J. Climate, 27, 2375–2385. doi: 10.1175/JCLI-D-13-00269.1
    Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 1765–1780. doi: 10.1175/JCLI-D-13-00337.1
    Li, Z. Q., W. K.-M. Lau, V. Ramanathan, et al., 2016: Aerosol and monsoon climate interactions over Asia. Rev. Geophys., 54, 866–929. doi: 10.1002/2015RG000500
    Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 4497–4525. doi: 10.1175/JCLI4272.1
    Lin, Y. L., X. M. Huang, Y. S. Liang, et al., 2020: Community Integrated Earth System Model (CIESM): Description and evaluation. J. Adv. Model. Earth Syst., 12, e2019MS002036. doi: 10.1029/2019MS002036
    Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418–2436. doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2
    Mahajan, S., K. J. Evans, J. J. Hack, et al., 2013: Linearity of climate response to increases in black carbon aerosols. J. Climate, 26, 8223–8237. doi: 10.1175/JCLI-D-12-00715.1
    Marshall, J., A. Donohoe, D. Ferreira, et al., 2014: The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone. Climate Dyn., 42, 1967–1979. doi: 10.1007/s00382-013-1767-z
    Masunaga, H., and T. S. L’Ecuyer, 2010: The southeast Pacific warm band and double ITCZ. J. Climate, 23, 1189–1208. doi: 10.1175/2009JCLI3124.1
    Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea surface temperature. J. Climate, 5, 1140–1156. doi: 10.1175/1520-0442(1992)005<1140:TACIEC>2.0.CO;2
    Möbis, B., and B. Stevens, 2012: Factors controlling the position of the Intertropical Convergence Zone on an aquaplanet. J. Adv. Model. Earth Syst., 4, M00A04. doi: 10.1029/2012MS000199
    Moreno-Chamarro, E., J. Marshall, and T. L. Delworth, 2020: Linking ITCZ migrations to the AMOC and North Atlantic/Pacific SST decadal variability. J. Climate, 33, 893–905. doi: 10.1175/JCLI-D-19-0258.1
    Ocko, I. B., V. Ramaswamy, and Y. Ming, 2014: Contrasting climate responses to the scattering and absorbing features of anthropogenic aerosol forcings. J. Climate, 27, 5329–5345. doi: 10.1175/JCLI-D-13-00401.1
    Oueslati, B., and G. Bellon, 2013: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. J. Climate, 26, 2931–2946. doi: 10.1175/JCLI-D-12-00314.1
    Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: interaction between SST, large-scale circulation and precipitation. Climate Dyn., 44, 585–607. doi: 10.1007/s00382-015-2468-6
    Philander, S. G. H., D. Gu, G. Lambert, et al., 1996: Why the ITCZ is mostly north of the equator. J. Climate, 9, 2958–2972. doi: 10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2
    Qian, C., and T. J. Zhou, 2014: Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J. Climate, 27, 1210–1222. doi: 10.1175/JCLI-D-13-00235.1
    Qin, Y., and Y. L. Lin, 2018: Alleviated double ITCZ problem in the NCAR CESM1: A new cloud scheme and the working mechanisms. J. Adv. Model. Earth Syst., 10, 2318–2332. doi: 10.1029/2018MS001343
    Riehl, H., 1979: Climate and Weather in the Tropics. Academic Press, London, UK and New York, NY, USA, 611 pp.
    Samanta, D., K. B. Karnauskas, and N. F. Goodkin, 2019: Tropical Pacific SST and ITCZ biases in climate models: Double trouble for future rainfall projections? Geophys. Res. Lett., 46, 2242–2252. doi: 10.1029/2018GL081363
    Schneider, T., 2017: Feedback of atmosphere-ocean coupling on shifts of the Intertropical Convergence Zone. Geophys. Res. Lett., 44, 11,644–11,653. doi: 10.1002/2017GL075817
    Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 45–53. doi: 10.1038/nature13636
    Song, F. F., and G. J. Zhang, 2016: Effects of southeastern Pacific sea surface temperature on the double-ITCZ bias in NCAR CESM1. J. Climate, 29, 7417–7433. doi: 10.1175/JCLI-D-15-0852.1
    Song, F. F., and G. J. Zhang, 2017: Impact of tropical SSTs in the North Atlantic and southeastern Pacific on the eastern Pacific ITCZ. J. Climate, 30, 1291–1305. doi: 10.1175/JCLI-D-16-0310.1
    Song, F. F., and G. J. Zhang, 2020: The impacts of horizontal resolution on the seasonally dependent biases of the northeastern Pacific ITCZ in coupled climate models. J. Climate, 33, 941–957. doi: 10.1175/JCLI-D-19-0399.1
    Song, F. F., T. J. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596–603. doi: 10.1002/2013GL058705
    Song, F. F., L. R. Leung, J. Lu, et al., 2018a: Future changes in seasonality of the North Pacific and North Atlantic subtropical highs. Geophys. Res. Lett., 45, 11,959–11,968. doi: 10.1029/2018GL079940
    Song, F. F., L. R. Leung, J. Lu, et al., 2018b: Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Climate Change, 8, 787–792. doi: 10.1038/s41558-018-0244-4
    Song, F. F., J. Lu, L. R. Leung, et al., 2020: Contrasting phase changes of precipitation annual cycle between land and ocean under global warming. Geophys. Res. Lett., 47, e2020GL090327. doi: 10.1029/2020GL090327
    Song, F. F., L. R. Leung, J. Lu, et al., 2021: Emergence of seasonal delay of tropical rainfall during 1979–2019. Nat. Climate Change, 11, 605–612, doi: 10.1038/s41558-021-01066-x.
    Song, X. L., and G. J. Zhang, 2018: The roles of convection parameterization in the formation of double ITCZ syndrome in the NCAR CESM: I. Atmospheric processes. J. Adv. Model. Earth Syst., 10, 842–866. doi: 10.1002/2017MS001191
    Stephens, G. L., M. Z. Hakuba, M. Hawcroft, et al., 2016: The curious nature of the hemispheric symmetry of the Earth’s water and energy balances. Curr. Climate Change Rep., 2, 135–147. doi: 10.1007/s40641-016-0043-9
    Suzuki, K., and T. Takemura, 2019: Perturbations to global energy budget due to absorbing and scattering aerosols. J. Geophys. Res. Atmos., 124, 2194–2209. doi: 10.1029/2018JD029808
    Takayabu, Y. N., S. Shige, W.-K. Tao, et al., 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 2030–2046. doi: 10.1175/2009JCLI3110.1
    Talib, J., S. J. Woolnough, N. P. Klingaman, et al., 2020: The effect of atmosphere-ocean coupling on the sensitivity of the ITCZ to convective mixing. J. Adv. Model. Earth Syst., 12, e2020MS002322. doi: 10.1029/2020MS002322
    Tian, B. J., and X. Y. Dong, 2020: The double-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation. Geophys. Res. Lett., 47, e2020GL087232. doi: 10.1029/2020GL087232
    Tomas, R. A., and P. J. Webster, 1997: The role of inertial instability in determining the location and strength of near-equatorial convection. Quart. J. Roy. Meteor. Soc., 123, 1445–1482. doi: 10.1002/qj.49712354202
    Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152. doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
    Voigt, A., M. Biasutti, J. Scheff, et al., 2016: The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP. J. Adv. Model. Earth Syst., 8, 1868–1891. doi: 10.1002/2016MS000748
    Voigt, A., R. Pincus, B. Stevens, et al., 2017: Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol. J. Adv. Model. Earth Syst., 9, 870–892. doi: 10.1002/2016MS000902
    Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 2162–2174. doi: 10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2
    Wang, C., 2015: Anthropogenic aerosols and the distribution of past large-scale precipitation change. Geophys. Res. Lett., 42, 10,876–10,884. doi: 10.1002/2015GL066416
    Wang, P. X., B. Wang, H. Cheng, et al., 2014: The global monsoon across timescales: coherent variability of regional monsoons. Climate Past, 10, 2007–2052. doi: 10.5194/cp-10-2007-2014
    Wang, Z. W., 2011: Simulation of radiative forcing of typical aerosols and their effects on climate. Ph.D. dissertation, Chinese Academy of Meteorological Sciences, China, 172 pp. (in Chinese)
    Wei, H.-H., and S. Bordoni, 2018: Energetic constraints on the ITCZ position in idealized simulations with a seasonal cycle. J. Adv. Model. Earth Syst., 10, 1708–1725. doi: 10.1029/2018MS001313
    Wodzicki, K. R., and A. D. Rapp, 2016: Long-term characterization of the Pacific ITCZ using TRMM, GPCP, and ERA-Interim. J. Geophys. Res. Atmos., 121, 3153–3170. doi: 10.1002/2015JD024458
    Wodzicki, K. R., and A. D. Rapp, 2020: Variations in precipitating convective feature populations with ITCZ width in the Pacific Ocean. J. Climate, 33, 4391–4401. doi: 10.1175/JCLI-D-19-0689.1
    Woelfle, M. D., C. S. Bretherton, C. Hannay, et al., 2019: Evolution of the double-ITCZ bias through CESM2 development. J. Adv. Model. Earth Syst., 11, 1873–1893. doi: 10.1029/2019MS001647
    Xiang, B. Q., M. Zhao, I. M. Held, et al., 2017: Predicting the severity of spurious “double ITCZ” problem in CMIP5 coupled models from AMIP simulations. Geophys. Res. Lett., 44, 1520–1527. doi: 10.1002/2016GL071992
    Xie, S.-P., 2004: The shape of continents, air-sea interaction, and the rising branch of the Hadley circulation. The Hadley Circulation: Present, Past and Future, H. F. Diaz, and R. S. Bradley, Eds., Springer, Dordrecht, 121–152, doi: 10.1007/978-1-4020-2944-8_5.
    Xie, S.-P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A Dyn. Meteor. Oceanogr., 46, 340–350. doi: 10.3402/tellusa.v46i4.15484
    Xu, H., Y. P. Song, Y. Goldsmith, et al., 2019: Meridional ITCZ shifts modulate tropical/subtropical Asian monsoon rainfall. Sci. Bull., 64, 1737–1739. doi: 10.1016/j.scib.2019.09.025
    Xu, K.-M., and A. N. Cheng, 2013: Evaluating low-cloud simulation from an upgraded multiscale modeling framework model. Part I: Sensitivity to spatial resolution and climatology. J. Climate, 26, 5717–5740. doi: 10.1175/JCLI-D-12-00200.1
    Yancheva, G., N. R. Nowaczyk, J. Mingram, et al., 2007: Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445, 74–77. doi: 10.1038/nature05431
    Yang, X., C. F. Zhao, L. J. Zhou, et al., 2016: Distinct impact of different types of aerosols on surface solar radiation in China. J. Geophys. Res. Atmos., 121, 6459–6471. doi: 10.1002/2016JD024938
    Zhang, C. D., 2001: Double ITCZs. J. Geophys. Res. Atmos., 106, 11,785–11,792. doi: 10.1029/2001JD900046
    Zhang, G. J., X. L. Song, and Y. Wang, 2019: The double ITCZ syndrome in GCMs: A coupled feedback problem among convection, clouds, atmospheric and ocean circulations. Atmos. Res., 229, 255–268. doi: 10.1016/j.atmosres.2019.06.023
    Zhang, H., S. Y. Zhao, Z. L. Wang, et al., 2016: The updated effective radiative forcing of major anthropogenic aerosols and their effects on global climate at present and in the future. Int. J. Climatol., 36, 4029–4044. doi: 10.1002/joc.4613
    Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 1853–1860. doi: 10.1175/JCLI3460.1
    Zhao, C. F., and T. J. Garrett, 2015: Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett., 42, 557–564. doi: 10.1002/2014GL062015
    Zhao, S. Y., 2015: Study on aerosol effective radiative forcing and their effects on global climate especially on terrestrial aridity. Ph.D. dissertation, University of Chinese Academy of Sciences, China, 131 pp. (in Chinese)
    Zhao, S. Y., and K. Suzuki, 2019: Differing impacts of black carbon and sulfate aerosols on global precipitation and the ITCZ location via atmosphere and ocean energy perturbations. J. Climate, 32, 5567–5582. doi: 10.1175/JCLI-D-18-0616.1
    Zhao, S. Y., and K. Suzuki, 2021: Exploring the impacts of aerosols on ITCZ position through altering different autoconversion schemes and cumulus parameterizations. J. Geophys. Res. Atmos., 126, e2021JD034803. doi: 10.1029/2021JD034803
    Zhou, C., H. Zhang, S. Y. Zhao, et al., 2018: On effective radiative forcing of partial internally and externally mixed aerosols and their effects on global climate. J. Geophys. Res. Atmos., 123, 401–423. doi: 10.1002/2017JD027603
  • Related Articles

  • Other Related Supplements

  • Cited by

    Periodical cited type(13)

    1. Junhong Wei, Fuqing Zhang, Jadwiga H. Richter, et al. Global Distributions of Tropospheric and Stratospheric Gravity Wave Momentum Fluxes Resolved by the 9-km ECMWF Experiments. Journal of the Atmospheric Sciences, 2022, 79(10): 2621. DOI:10.1175/JAS-D-21-0173.1
    2. James H. Ruppert, Steven E. Koch, Xingchao Chen, et al. Mesoscale Gravity Waves and Midlatitude Weather: A Tribute to Fuqing Zhang. Bulletin of the American Meteorological Society, 2022, 103(1): E129. DOI:10.1175/BAMS-D-20-0005.1
    3. Renzo Richiardone, Massimiliano Manfrin, Silvia Ferrarese, et al. Modulation of precipitation by a mesoscale gravity wave in northern Italy: Detection and analysis. Quarterly Journal of the Royal Meteorological Society, 2020, 146(726): 105. DOI:10.1002/qj.3658
    4. Tingting Qian, Fuqing Zhang, Junhong Wei, et al. Diurnal Characteristics of Gravity Waves over the Tibetan Plateau in 2015 Summer Using 10-km Downscaled Simulations from WRF-EnKF Regional Reanalysis. Atmosphere, 2020, 11(6): 631. DOI:10.3390/atmos11060631
    5. Hye-Yeong Chun, Byeong-Gwon Song, Seok-Woo Shin, et al. Gravity Waves Associated with Jet/Front Systems. Part I: Diagnostics and their Correlations with GWs Revealed in High-Resolution Global Analysis Data. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55(4): 589. DOI:10.1007/s13143-019-00104-1
    6. Junhong Wei, Gergely Bölöni, Ulrich Achatz. Efficient Modeling of the Interaction of Mesoscale Gravity Waves with Unbalanced Large-Scale Flows: Pseudomomentum-Flux Convergence versus Direct Approach. Journal of the Atmospheric Sciences, 2019, 76(9): 2715. DOI:10.1175/JAS-D-18-0337.1
    7. Junhong Wei, Fuqing Zhang, Jadwiga H. Richter. An Analysis of Gravity Wave Spectral Characteristics in Moist Baroclinic Jet–Front Systems. Journal of the Atmospheric Sciences, 2016, 73(8): 3133. DOI:10.1175/JAS-D-15-0316.1
    8. Riwal Plougonven, Albert Hertzog, M. Joan Alexander. Case studies of nonorographic gravity waves over the Southern Ocean emphasize the role of moisture. Journal of Geophysical Research: Atmospheres, 2015, 120(4): 1278. DOI:10.1002/2014JD022332
    9. Fuqing Zhang, Junhong Wei, Meng Zhang, et al. Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment. Atmospheric Chemistry and Physics, 2015, 15(13): 7667. DOI:10.5194/acp-15-7667-2015
    10. Junhong Wei, Fuqing Zhang. Tracking gravity waves in moist baroclinic jet-front systems. Journal of Advances in Modeling Earth Systems, 2015, 7(1): 67. DOI:10.1002/2014MS000395
    11. Junhong Wei, Fuqing Zhang. Mesoscale Gravity Waves in Moist Baroclinic Jet–Front Systems. Journal of the Atmospheric Sciences, 2014, 71(3): 929. DOI:10.1175/JAS-D-13-0171.1
    12. Riwal Plougonven, Fuqing Zhang. Internal gravity waves from atmospheric jets and fronts. Reviews of Geophysics, 2014, 52(1): 33. DOI:10.1002/2012RG000419
    13. Riwal Plougonven, Fuqing Zhang. Aviation Turbulence. DOI:10.1007/978-3-319-23630-8_19

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return