Development and Validation of an Evaporation Duct Model. Part I: Model Establishment and Sensitivity Experiments

+ Author Affiliations + Find other works by these authors
  • Corresponding author: FEI Jianfang
Funds: 

Supported by the National Natural Science Foundation of China (41205004, 41230421, and 41105065) and China Meteorological Administration Special Public Welfare Research Fund (GYHY201106004).

PDF

  • Based on the Coupled Ocean-Atmospheric Response Experiment (COARE) bulk algorithm and the Naval Postgraduate School (NPS) model, a universal evaporation duct (UED) model that can flexibly accommodate the latest improvements in component (such as stability function, velocity roughness, and scalar roughness) schemes for different stratification and wind conditions, is proposed in this paper. With the UED model, the sensitivity of the model-derived evaporation duct height (EDH) to stability function (), ocean wave effect under moderate to high wind speeds, and scalar roughness length parameterization, is investigated, and relative contributions of these factors are compared. The results show that the stability function is a key factor influencing the simulated EDH values. Under unstable conditions, the EDH values from stability functions of Fairall et al. (1996) and Hu and Zhang (1992) are generally higher than those from others; while under stable conditions, unreasonably high EDHs can be avoided by use of the stability functions of Hu and Zhang (1992) and Grachev et al. (2007). Under moderate to high wind speeds, the increase in velocity roughness length z0 due to consideration of the true ocean wave effect acts to reduce modeled EDH values; this trend is more pronounced under stable conditions. Although the scalar roughness length parameterization has a minor effect on the model-derived EDH, a positive correlation is found between the scalar roughness length z0q and the model-derived EDH.
  • Babin, S. M., G. S. Young, and J. A. Carton, 1997: A new model of the oceanic evaporation duct. J. Appl. Meteor., 36, 193-204.
    Babin, S. M., and G. D. Dockery, 2002: LKB-based evaporation duct model comparison with buoy data. J. Appl. Meteor., 41, 434-446.
    Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327-341.
    Brutsaert, W., 1975: A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level. Water Resour. Res., 11, 543-550.
    Burk, S. D., T. Haack, L. T. Rogers, et al., 2003: Island wake dynamics and wake influence on the evaporation duct and radar propagation. J. Appl. Meteor., 42, 349-367.
    Businger, J. A., J. C. Wyngaard, Y. Izumi, et al., 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181-189.
    Cheng, Y. G., and W. Brutsaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteor., 114, 519-538.
    Cook, J., 1991: A sensitivity study of weather data inaccuracies on evaporation duct height algorithms. Radio Sci., 26, 731-746.
    Dai Fushan, 1998: The refractivity models in the marine atmospheric surface layer and their applications in the evaporation duct analysis. Chinese J. Radio Sci., 13, 103-118. (in Chinese)
    Dai Fushan, 2013: Modeling turbulence effects on radar wave propagation over sea. Chinese J. Radio Sci., 28, 80-86. (in Chinese)
    Dai Fushan, Li Qun, Dong Shuanglin, et al., 2002: Atmospheric Duct and Its Application in Military. PLA Press of China, Beijing, 112-243. (in Chinese)
    Ding Juli, Jianfang Fei, Xiaogang Huang, et al., 2011: Improvement to the evaporation duct model by introducing nonlinear similarity functions in stable conditions. J. Trop. Meteor., 27, 410-416.
    Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363-372.
    Edson, J. B., C. J. Zappa, J. A. Ware, et al., 2004: Scalar flux profile relationships over the open ocean. J. Geophys. Res., 109, C08S09, doi: 10.1029/ 2003JC001960.
    Fairall, C. W., E. F. Bradley, D. P. Rogers, et al., 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 3747-3764.
    Fairall, C. W., E. F. Bradley, J. E. Hare, et al., 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571-592.
    Frederickson, P. A., K. L. Davidson, C. R. Zeisse, et al., 2000: Estimating the refractive index structure parameter over the ocean using bulk methods. J. Appl. Meteor., 39, 1770-1783.
    Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.
    Gehman, J. Z., 2000: Importance of evaporation duct stability in propagation-sensitive studies. JHU/APL (Applied Physics Laboratory, Johns Hopkins University) Technical Report, A2A-00-U-3-008, 8 pp.
    Gerstoft, P., L. T. Rogers, J. L. Krolik, et al., 2003: Inversion for refractivity parameters from radar sea clutter. Radio Sci., 38, 8053, doi: 10.1029/ 2002RS002640.
    Grachev, A. A., C. W. Fairall, and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495-515.
    Grachev, A. A., E. L. Andreas, and C. W. Fairall, 2007: SHEBA flux-profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor., 124, 315-333.
    Hu Yinqiao and Zhang Qiang, 1992: Local similarity in the atmosphere boundary layer. Chinese J. Atmos. Sci., 17, 10-20. (in Chinese)
    Jeske, H., 1973: State and limits of prediction methods of radar wave propagation conditions over the sea. Modern Topics in Microwave Propagation and Air-Sea Interaction, A. Zancla, Ed., D. Reidel Publishing, 130-148.
    Jiao Lin and Zhang Yonggang, 2009: An evaporation duct prediction model coupled with the MM5. Acta Meteor. Sinica, 67, 382-387. (in Chinese)
    Katzin, M., R. W. Bauchman, and W. Binnian, 1947: 3and 9-centimeter propagation in low ocean ducts. Proceedings of the IRE, 35, 891-905.
    Li Yunbo, Zhang Yonggang, Tang Haichuan, et al., 2009: Oceanic evaporation duct diagnosis model based on air-sea flux algorithm. J. Appl. Meteor. Sci., 20, 628-633. (in Chinese)
    Liu Chengguo, Huang Jiying, Jiang Changyin, et al., 2001: Modeling evaporation duct over sea with pseudo-refractivity and similarity theory. Acta Electronica Sinica, 29, 970-972. (in Chinese)
    Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of the air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735.
    Liu, W. T., and T. V. Blanc, 1984: The Liu, Katsaros and Businger (1979) Bulk Atmospheric Flux Computational Iteration Program in FORTRAN and BASIC. NRL Memorandum Report 5291, 8 May, AD-A156, 736.
    Musson-Genon, L., S. Gauthier, and E. Bruth, 1992: A simple method to determine evaporation duct height in the sea surface boundary layer. Radio Sci., 27, 635-644.
    Newton, D. A., 2003: COAMPS modeled surface layer refractivity at the roughness and evaporation duct experiment 2001. Master dissertation, Naval Postgraduate School, America, 62 pp.
    Oost, W. A., G. J. Komen, C. M. J. Jacobs, et al., 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409-438.
    Paulus, R. A., 1985: Practical application of an evaporation duct model. Radio Sci., 20, 887-896.
    Sheng Zheng, Huang Sixun, and Zeng Guodong, 2009: Ocean duct inversion from radar clutter using Bayesian-Markov chain Monte Carlo method. Acta Phys. Sinica, 58, 4335-4341. (in Chinese)
    Smith, S. D., 1988: Coeffcients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15467-15472.
    Taylor, P. K., and M. A. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572-590.
    Vasudevan, S., R. H. Anderson, S. Kraut, et al., 2007: Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter. Radio Sci., 42, RS2014, doi: 10.1029/2005RS003423.
    Wang Zhe, Wang Zhenhui, and Zhang Yusheng, 2010: Numerical simulation of evaporation duct with WRF model. Ocean Technol., 29, 35-45. (in Chinese)
    Yang Kunde, Ma Yuanliang, and Shi Yang, 2009: Spatiotemporal distributions of evaporation duct for the West Pacific Ocean. Acta Phys. Sinica, 58, 73397350. (in Chinese)
    Yelland, M. A., and P. K. Taylor, 1996: Wind stress measurements from the open ocean. J. Phys. Oceanogr., 26, 541-558.
    Zhang Qiang and Hu Yinqiao, 1995: The flux-profile relationships under the condition of heat advection over moist surface. Chinese J. Atmos. Sci., 19, 8-19. (in Chinese)
    Zhao, X. F., S. X. Huang, and H. D. Du, 2011: Theoretical analysis and numerical experiments of variational adjoint approach for refractivity estimation. Radio Sci., 46, 1006, doi: 10.1029/2010RS004417.
    Zuo Lei, Cha Hao, Zhou Mo, et al., 2011: Inversion for evaporation duct from radar sea clutter based on immune algorithm. Acta Electron. Sinica, 39, 23822386. (in Chinese)
  • Related Articles

  • Cited by

    Periodical cited type(17)

    1. Yingxue Cui, Tong Hu, Ke Qi, et al. Research on Optimization Method of Evaporation Duct Prediction Model. Mathematics, 2024, 12(2): 205. DOI:10.3390/math12020205
    2. Ning Yang, Xiaohai Zou, Luyao Sun, et al. The non-uniformity characteristics of the evaporation duct in the South China Sea based on CLDAS data. Frontiers in Marine Science, 2024, 10 DOI:10.3389/fmars.2023.1326975
    3. Zhigang Shan, Niaojun Sun, Wei Wang, et al. Investigating the Role of Wave Process in the Evaporation Duct Simulation by Using an Ocean–Atmosphere–Wave Coupled Model. Atmosphere, 2024, 15(6): 707. DOI:10.3390/atmos15060707
    4. Ning Yang, Debin Su, Tao Wang. Atmospheric Ducts and Their Electromagnetic Propagation Characteristics in the Northwestern South China Sea. Remote Sensing, 2023, 15(13): 3317. DOI:10.3390/rs15133317
    5. Xingyu Chai, Jincai Li, Jun Zhao, et al. NWPP-EDH: Numerical weather prediction products evaporation duct regional prediction model. Frontiers in Earth Science, 2023, 10 DOI:10.3389/feart.2022.1031186
    6. Fan Yang, Kunde Yang, Yang Shi, et al. The Effects of Rainfall on Over-the-Horizon Propagation in the Evaporation Duct over the South China Sea. Remote Sensing, 2022, 14(19): 4787. DOI:10.3390/rs14194787
    7. Xingyu Chai, Jincai Li, Jun Zhao, et al. LGB-PHY: An Evaporation Duct Height Prediction Model Based on Physically Constrained LightGBM Algorithm. Remote Sensing, 2022, 14(14): 3448. DOI:10.3390/rs14143448
    8. Wenpeng Zhao, Jun Zhao, Jincai Li, et al. An Evaporation Duct Height Prediction Model Based on a Long Short-Term Memory Neural Network. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7795. DOI:10.1109/TAP.2021.3076478
    9. Bin Tian, Qianqian Liu, Jun Lu, et al. The influence of seasonal and nonreciprocal evaporation duct on electromagnetic wave propagation in the Gulf of Aden. Results in Physics, 2020, 18: 103181. DOI:10.1016/j.rinp.2020.103181
    10. Zhichao Liang, Juli Ding, Jianfang Fei, et al. Maintenance and Sudden Change of a Strong Elevated Ducting Event Associated with High Pressure and Marine Low-Level Jet. Journal of Meteorological Research, 2020, 34(6): 1287. DOI:10.1007/s13351-020-9192-9
    11. Juli Ding, Jianfang Fei, Xiaogang Huang, et al. Validation of Evaporation Duct Model in Coastal Regions with ASIT Data. Journal of Coastal Research, 2020, 99(sp1): 270. DOI:10.2112/SI99-039.1
    12. Wenpeng Zhao, Jincai Li, Jun Zhao, et al. Research on evaporation duct height prediction based on back propagation neural network. IET Microwaves, Antennas & Propagation, 2020, 14(13): 1547. DOI:10.1049/iet-map.2019.1136
    13. Xiangming Guo, Dongliang Zhao, Lijun Zhang, et al. A Comparison Study of Sensitivity on PJ and NPS Models in China Seas. Journal of Ocean University of China, 2019, 18(5): 1022. DOI:10.1007/s11802-019-3971-x
    14. Yang Shi, Kunde Yang, Yixin Yang, et al. A new evaporation duct climatology over the South China Sea. Journal of Meteorological Research, 2015, 29(5): 764. DOI:10.1007/s13351-015-4127-6
    15. Juli Ding, Jianfang Fei, Xiaogang Huang, et al. Development and validation of an evaporation duct model. Part II: Evaluation and improvement of stability functions. Journal of Meteorological Research, 2015, 29(3): 482. DOI:10.1007/s13351-015-3239-3
    16. Wenpeng Zhao, Jun Zhao, Jincai Li, et al. PCR Model: Optimization of Evaporation Duct Height Prediction Based on Principal Component Regression. 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), DOI:10.1109/ICSIP49896.2020.9339390
    17. Liu Ning, Wei Xiaohui, Xu Chen. Design and verification of Zigbee sensor height setting algorithm based on Kalman Filter. 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), DOI:10.1109/ICEMI46757.2019.9101817

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return