Spatiotemporal Variations of Cloud Amount over the Yangtze River Delta, China

+ Author Affiliations + Find other works by these authors
  • Funds:

    Supported by the National Basic Research and Development (973) Program of China (2010CB428501) and National NaturalScience Foundation of China (41375014).

  • doi: 10.1007/s13351-014-3064-0

PDF

  • Based on the NOAA's Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres Extended (PATMOS-x) monthly mean cloud amount data, variations of annual and seasonal mean cloud amount over the Yangtze River Delta (YRD), China were examined for the period 1982-2006 by using a linear regression analysis. Both total and high-level cloud amounts peak in June and reach minimum in December, mid-level clouds have a peak during winter months and reach a minimum in summer, and low-level clouds vary weakly throughout the year with a weak maximum from August to October. For the annual mean cloud amount, a slightly decreasing tendency (-0.6% sky cover per decade) of total cloud amount is observed during the studying period, which is mainly due to the reduction of annual mean high-level cloud amount (-2.2% sky cover per decade). Mid-level clouds occur least (approximately 15% sky cover) and remain invariant, while the low-level cloud amount shows a significant increase during spring (1.5% sky cover per decade) and summer (3.0% sky cover per decade). Further analysis has revealed that the increased low-level clouds during the summer season are mainly impacted by the local environment. For example, compared to the low-level cloud amounts over the adjacent rural areas (e.g., cropland, large water body, and mountain areas covered by forest), those over and around urban agglomerations rise more dramatically.
  • 加载中
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Spatiotemporal Variations of Cloud Amount over the Yangtze River Delta, China

  • 1. Institute for Climate and Global Change Research and School of Atmospheric Sciences,Nanjing University,Nanjing 210093;
    Institute for Climate and Global Change Research and School of Atmospheric Sciences,Nanjing University,Nanjing 210093;
    Institute for Climate and Global Change Research and School of Atmospheric Sciences,Nanjing University,Nanjing 210093
Funds: Supported by the National Basic Research and Development (973) Program of China (2010CB428501) and National NaturalScience Foundation of China (41375014).

Abstract: Based on the NOAA's Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres Extended (PATMOS-x) monthly mean cloud amount data, variations of annual and seasonal mean cloud amount over the Yangtze River Delta (YRD), China were examined for the period 1982-2006 by using a linear regression analysis. Both total and high-level cloud amounts peak in June and reach minimum in December, mid-level clouds have a peak during winter months and reach a minimum in summer, and low-level clouds vary weakly throughout the year with a weak maximum from August to October. For the annual mean cloud amount, a slightly decreasing tendency (-0.6% sky cover per decade) of total cloud amount is observed during the studying period, which is mainly due to the reduction of annual mean high-level cloud amount (-2.2% sky cover per decade). Mid-level clouds occur least (approximately 15% sky cover) and remain invariant, while the low-level cloud amount shows a significant increase during spring (1.5% sky cover per decade) and summer (3.0% sky cover per decade). Further analysis has revealed that the increased low-level clouds during the summer season are mainly impacted by the local environment. For example, compared to the low-level cloud amounts over the adjacent rural areas (e.g., cropland, large water body, and mountain areas covered by forest), those over and around urban agglomerations rise more dramatically.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return