Discrimination and Validation of Clouds and Dust Aerosol Layers over the Sahara Desert with Combined CALIOP and IIR Measurements

+ Author Affiliations + Find other works by these authors
Funds: 

Supported by the National (Key) Basic Research and Development (973) Program of China (2012CB955301), Fundamental Research Funds for the Central Universities (LZUJBKY-2013-104 and LZUJBKY-2009-k03), Development Program of Changjiang Scholarship and Research Team (IRT1018), and China Meteorological Administration Special Public Welfare Research Fund (GYHY201206009).

PDF

  • This study validates a method for discriminating between daytime clouds and dust aerosol layers over the Sahara Desert that uses a combination of active CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) and passive IIR (Infrared Imaging Radiometer) measurements; hereafter, the CLIM method. The CLIM method reduces misclassification of dense dust aerosol layers in the Sahara region relative to other techniques. When evaluated against a suite of simultaneous measurements from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), CloudSat, and the MODIS (Moderate-resolution Imaging Spectroradiometer), the misclassification rate for dust using the CLIM technique is 1.16% during boreal spring 2007. This rate is lower than the misclassification rates for dust using the cloud aerosol discriminations performed for version 2 (V2-CAD; 16.39%) or version 3 (V3-CAD; 2.01%) of the CALIPSO data processing algorithm. The total identification errors for data from in spring 2007 are 13.46% for V2-CAD, 3.39% for V3-CAD, and 1.99% for CLIM. These results indicate that CLIM and V3-CAD are both significantly better than V2-CAD for discriminating between clouds and dust aerosol layers. Misclassifications by CLIM in this region are mainly limited to mixed cloud-dust aerosol layers. V3-CAD sometimes misidentifies low-level aerosol layers adjacent to the surface as thin clouds, and sometimes fails to detect thin clouds entirely. The CLIM method is both simple and fast, and may be useful as a reference for testing or validating other discrimination techniques and methods.
  • Related Articles

  • Cited by

    Periodical cited type(18)

    1. Marta Luffarelli, Yves Govaerts, Lucio Franceschini. Aerosol Optical Thickness Retrieval in Presence of Cloud: Application to S3A/SLSTR Observations. Atmosphere, 2022, 13(5): 691. DOI:10.3390/atmos13050691
    2. Foad Brakhasi, Mohammad Hajeb, Tero Mielonen, et al. Investigating aerosol vertical distribution using CALIPSO time series over the Middle East and North Africa (MENA), Europe, and India: A BFAST-based gradual and abrupt change detection. Remote Sensing of Environment, 2021, 264: 112619. DOI:10.1016/j.rse.2021.112619
    3. Sudip Chakraborty, Jonathan H. Jiang, Hui Su, et al. Deep Convective Evolution From Shallow Clouds Over the Amazon and Congo Rainforests. Journal of Geophysical Research: Atmospheres, 2020, 125(1) DOI:10.1029/2019JD030962
    4. Lamei Shi, Jiahua Zhang, Da Zhang, et al. Developing a dust storm detection method combining Support Vector Machine and satellite data in typical dust regions of Asia. Advances in Space Research, 2020, 65(4): 1263. DOI:10.1016/j.asr.2019.11.027
    5. Z. Zhang, J. Huang, B. Chen, et al. Three‐Year Continuous Observation of Pure and Polluted Dust Aerosols Over Northwest China Using the Ground‐Based Lidar and Sun Photometer Data. Journal of Geophysical Research: Atmospheres, 2019, 124(2): 1118. DOI:10.1029/2018JD028957
    6. Foad Brakhasi, Aliakbar Matkan, Mohammad Hajeb, et al. Atmospheric scene classification using CALIPSO spaceborne lidar measurements in the Middle East and North Africa (MENA), and India. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 721. DOI:10.1016/j.jag.2018.07.017
    7. Hongke Cai, Yunfei Fu, Quanliang Chen, et al. Optical properties of cirrus transition zones over China detected by CALIOP. Journal of Meteorological Research, 2017, 31(3): 576. DOI:10.1007/s13351-017-6044-3
    8. Oz Kira, Raphael Linker, Yael Dubowski. Detection and quantification of water-based aerosols using active open-path FTIR. Scientific Reports, 2016, 6(1) DOI:10.1038/srep25110
    9. Jingjing Liu, Jianping Huang, Bin Chen, et al. Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153: 102. DOI:10.1016/j.jqsrt.2014.10.011
    10. Qiaoyi Lü, Jiming Li, Tianhe Wang, et al. Cloud radiative forcing induced by layered clouds and associated impact on the atmospheric heating rate. Journal of Meteorological Research, 2015, 29(5): 779. DOI:10.1007/s13351-015-5078-7
    11. Wencai Wang, Lifang Sheng, Hongchun Jin, et al. Dust aerosol effects on cirrus and altocumulus clouds in Northwest China. Journal of Meteorological Research, 2015, 29(5): 793. DOI:10.1007/s13351-015-4116-9
    12. Rui Jia, Yuzhi Liu, Bin Chen, et al. Source and transportation of summer dust over the Tibetan Plateau. Atmospheric Environment, 2015, 123: 210. DOI:10.1016/j.atmosenv.2015.10.038
    13. Yingying Ma, Wei Gong, Feiyue Mao. Transfer learning used to analyze the dynamic evolution of the dust aerosol. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153: 119. DOI:10.1016/j.jqsrt.2014.09.025
    14. JinFang Yin, DongHai Wang, HuanBin Xu, et al. An investigation into the three-dimensional cloud structure over East Asia from the CALIPSO-GOCCP Data. Science China Earth Sciences, 2015, 58(12): 2236. DOI:10.1007/s11430-015-5205-4
    15. Hongchun Jin, Yuhong Yi, Shaima L Nasiri, et al. Impacts of Asian dust on the determination of cloud thermodynamic phase from satellite observations. Environmental Research Letters, 2015, 10(3): 034006. DOI:10.1088/1748-9326/10/3/034006
    16. Sudip Chakraborty, Rong Fu, Jonathon S. Wright, et al. Relationships between convective structure and transport of aerosols to the upper troposphere deduced from satellite observations. Journal of Geophysical Research: Atmospheres, 2015, 120(13): 6515. DOI:10.1002/2015JD023528
    17. Bin Chen, Peng Zhang, Beidou Zhang, et al. An overview of passive and active dust detection methods using satellite measurements. Journal of Meteorological Research, 2014, 28(6): 1029. DOI:10.1007/s13351-014-4032-4
    18. Thomas S. Pagano, D. P. Osterman, S. Collins, et al. CIRiS: Compact Infrared Radiometer in Space. CubeSats and NanoSats for Remote Sensing, DOI:10.1117/12.2238999

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return