Spectra and Cospectra of Turbulence in an Internal Boundary Layer over a Heterogeneously Irrigated Cotton Field


  • During the Energy Balance Experiment, patch-to-patch irrigation generated gradients in soil moisture in a north-south oriented cotton field. An internal boundary layer (IBL) developed as a result of strong horizontal advection from relatively dry upstream patches to relatively wet downstream patches associated with the prevailing northerly winds. This generated large eddies of multiple sizes, which had significant influences on the structure of turbulence in the IBL. The power spectra and cospectra of wind speed, temperature, humidity, and energy fluxes measured at two heights within the IBL are presented and used to investigate the influence of the IBL on surface layer turbulence. The spectra and cospectra were greatly enhanced by external disturbances at low frequencies. The peak frequencies of these disturbances did not change with height. The spectra and cospectra typically converged and were parallel to the Kansas spectrum at high frequencies (in the inertial subrange). A clear gap in the spectra of horizontal wind velocity existed at intermediate frequencies when the surface layer was stable. The results indicate that large eddies that originated in the upstream convective boundary layer had considerable impacts on the spectra and cospectra of surface layer turbulence. The influence of these large eddies was greater (1) when the IBL was well-developed in the near surface layer than when the IBL did not exist, (2) at higher levels than at lower levels, and (3) when the atmospheric surface layer (ASL) was unstable than when the ASL was stable. The length scales of these large eddies were consistent with the dominant scales of surface heterogeneity at the experiment site.
  • loading



    DownLoad:  Full-Size Img  PowerPoint