1. |
Zhou Liu, Fengxia Guo, Yuqiang Zhang, et al. Impact of Lightning‐Induced Nitrogen Oxides Over and Around the Tibetan Plateau on the Tibetan Plateau Ozone Valley. Journal of Geophysical Research: Atmospheres, 2024, 129(1)
DOI:10.1029/2023JD039575
|
2. |
Yishun Wan, Feng Xu, Shujie Chang, et al. The Impact of Different Types of El Niño Events on the Ozone Valley of the Tibetan Plateau Based on the WACCM4 Mode. Applied Sciences, 2024, 14(3): 1090.
DOI:10.3390/app14031090
|
3. |
Lingaona Zhu, Zhiwei Wu. To what extent can the ozone valley over the Tibetan Plateau influence the East Asian summer precipitation?. npj Climate and Atmospheric Science, 2023, 6(1)
DOI:10.1038/s41612-023-00508-x
|
4. |
Jiakang Duan, Wenshou Tian, Jiankai Zhang, et al. Impact of the Indian Ocean SST on Wintertime Total Column Ozone Over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2023, 128(8)
DOI:10.1029/2022JD037850
|
5. |
Kequan Zhang, Jiakang Duan, Siyi Zhao, et al. Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. Advances in Atmospheric Sciences, 2022, 39(7): 1167.
DOI:10.1007/s00376-021-0442-2
|
6. |
Wenjun Liang, Zhen Yang, Jiali Luo, et al. Impacts of the atmospheric apparent heat source over the Tibetan Plateau on summertime ozone vertical distributions over Lhasa. Atmospheric and Oceanic Science Letters, 2021, 14(3): 100047.
DOI:10.1016/j.aosl.2021.100047
|
7. |
Siyang Cheng, Jianzhong Ma, Xiangdong Zheng, et al. Retrieval of O3, NO2, BrO and OClO Columns from Ground-Based Zenith Scattered Light DOAS Measurements in Summer and Autumn over the Northern Tibetan Plateau. Remote Sensing, 2021, 13(21): 4242.
DOI:10.3390/rs13214242
|
8. |
Wenwen Xu, Qianqian Song, Yajuan Li, et al. Effects of Stationary and Transient Transport of Ozone on the Ozone Valley Over the Tibetan Plateau in Summer. Frontiers in Earth Science, 2021, 9
DOI:10.3389/feart.2021.608018
|
9. |
Yajuan Li, Martyn P. Chipperfield, Wuhu Feng, et al. Analysis and attribution of total column ozone changes over the Tibetan Plateau during 1979–2017. Atmospheric Chemistry and Physics, 2020, 20(14): 8627.
DOI:10.5194/acp-20-8627-2020
|
10. |
Xiaohang Wen, Wenqi Pan, Xiaoguang Sun, et al. Study on the Variation Trend of Potential Evapotranspiration in the Three-River Headwaters Region in China Over the Past 20 years. Frontiers in Earth Science, 2020, 8
DOI:10.3389/feart.2020.582742
|
11. |
Shuai Yang, Zhang Wei, Bin Chen, et al. Influences of atmospheric ventilation on the composition of the upper troposphere and lower stratosphere during the two primary modes of the South Asia high. Meteorology and Atmospheric Physics, 2020, 132(4): 559.
DOI:10.1007/s00703-019-00706-4
|
12. |
Jianjun Yan, Geli Wang, Peicai Yang. Study on the Sensitivity of Summer Ozone Density to the Enhanced Aerosol Loading over the Tibetan Plateau. Atmosphere, 2020, 11(2): 138.
DOI:10.3390/atmos11020138
|
13. |
Dong Guo, Peijie Shen, Chunhua Shi, et al. Calculation of the Vertical Velocity in the Asian Summer Monsoon Anticyclone Region Using the Thermodynamic Method With in situ and Satellite Data. Frontiers in Earth Science, 2020, 8
DOI:10.3389/feart.2020.00096
|
14. |
Zhiming Zhang, Jian Rao, Dong Guo, et al. Interdecadal Variations of the Midlatitude Ozone Valleys in Summer. Atmosphere, 2019, 10(11): 677.
DOI:10.3390/atmos10110677
|
15. |
Chunhua Shi, Ying Huang, Dong Guo, et al. Comparison of trends and abrupt changes of the South Asia high from 1979 to 2014 in reanalysis and radiosonde datasets. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 170: 48.
DOI:10.1016/j.jastp.2018.02.005
|
16. |
Yuanyuan Han, Fei Xie, Shiyan Zhang, et al. An Analysis of Tropical Cold-Point Tropopause Warming in 1999. Advances in Meteorology, 2017, 2017: 1.
DOI:10.1155/2017/4572532
|
17. |
Dong Guo, Yucheng Su, Xiuji Zhou, et al. Evaluation of the trend uncertainty in summer ozone valley over the Tibetan Plateau in three reanalysis datasets. Journal of Meteorological Research, 2017, 31(2): 431.
DOI:10.1007/s13351-017-6058-x
|
18. |
Sheng Bo Chen, Liang Zhao, Yu Long Tao. Stratospheric ozone change over the Tibetan Plateau. Atmospheric Pollution Research, 2017, 8(3): 528.
DOI:10.1016/j.apr.2016.11.007
|
19. |
Chunhua Shi, Chenxin Zhang, Dong Guo. Comparison of Electrochemical Concentration Cell Ozonesonde and Microwave Limb Sounder Satellite Remote Sensing Ozone Profiles for the Center of the South Asian High. Remote Sensing, 2017, 9(10): 1012.
DOI:10.3390/rs9101012
|
20. |
Zhenkun Li, Hao Qin, Dong Guo, et al. Impact of Ozone Valley over the Tibetan Plateau on the South Asian High in CAM5. Advances in Meteorology, 2017, 2017: 1.
DOI:10.1155/2017/9383495
|
21. |
Jiali Luo, Jiayao Song, Hongying Tian, et al. A Case Study of Mass Transport during the East-West Oscillation of the Asian Summer Monsoon Anticyclone. Advances in Meteorology, 2017, 2017: 1.
DOI:10.1155/2017/5174025
|
22. |
Yuanxiang Wang, Ping Zhao, Haiming Xu, et al. Anomalies of Northern Hemisphere ozone associated with a tropopause‐lower stratosphere teleconnection during summer. International Journal of Climatology, 2016, 36(2): 837.
DOI:10.1002/joc.4386
|
23. |
Dong Guo, Yucheng Su, Chunhua Shi, et al. Double core of ozone valley over the Tibetan Plateau and its possible mechanisms. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 130-131: 127.
DOI:10.1016/j.jastp.2015.05.018
|
24. |
L. Ran, W. L. Lin, Y. Z. Deji, et al. Surface gas pollutants in Lhasa, a highland city of Tibet – current levels and pollution implications. Atmospheric Chemistry and Physics, 2014, 14(19): 10721.
DOI:10.5194/acp-14-10721-2014
|
25. |
Libo Zhou, Han Zou, Shupo Ma, et al. The Tibetan ozone low and its long-term variation during 1979–2010. Acta Meteorologica Sinica, 2013, 27(1): 75.
DOI:10.1007/s13351-013-0108-9
|
26. |
Yan Zhang, Liang Zhao, Weihe WANG, et al. Summer ozone variation derived from FY3/TOU satellite data and impacts of East Asian summer monsoon. Remote Sensing of the Atmosphere, Clouds, and Precipitation VII,
DOI:10.1117/12.2324838
|