[1] Alexander, M. A., I. Bladé, M. Newman, et al., 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
[2] Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air–sea interactions at the onset of El Niño. J. Climate, 14, 1702–1719. doi: 10.1175/1520-0442(2001)014<1702:IASIAT>2.0.CO;2
[3] Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516–518. doi: 10.1038/385516a0
[4] Chang, P., Y. Fang, R. Saravanan, et al., 2006: The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 443, 324–328. doi: 10.1038/nature05053
[5] Chen, X., J. Ling, and C. Y. Li, 2015: Evolution of the Madden–Julian Oscillation in two types of El Niño. J. Climate, 29, 1919–1934. doi: 10.1175/JCLI-D-15-0486.1
[6] Chiang, J. C. H., and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 2616–2631. doi: 10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2
[7] Chiodi, A. M., D. E. Harrison, and G. A. Vecchi, 2014: Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden–Julian Oscillation and westerly wind events. J. Climate, 27, 3619–3642. doi: 10.1175/JCLI-D-13-00547.1
[8] Ding, H., N. S. Keenlyside, and M. Latif, 2012: Impact of the equatorial Atlantic on the El Niño–Southern Oscillation. Climate Dyn., 38, 1965–1972. doi: 10.1007/s00382-011-1097-y
[9] Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483–3505. doi: 10.1175/JCLI3473.1
[10] Ding, R. Q., J. P. Li, Y.-H. Tseng, et al., 2017: Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Climate Dyn., 49, 1321–1339. doi: 10.1007/s00382-016-3389-8
[11] Dommenget, D., V. Semenov, and M. Latif, 2006: Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys. Res. Lett., 33, L11701. doi: 10.1029/2006GL025871
[12] Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929–945. doi: 10.1029/96JC03296
[13] Feng, J., P. Liu, W. Chen, et al., 2015: Contrasting Madden–Julian Oscillation activity during various stages of EP and CP El Niños. Atmos. Sci. Lett., 16, 32–37. doi: 10.1002/asl2.516
[14] Frauen, C., and D. Dommenget, 2012: Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett., 39, L02706. doi: 10.1029/2011GL050520
[15] Giannini, A., Y. Kushnir, and M. A. Cane, 2000: Interannual variability of Caribbean rainfall, ENSO, and the Atlantic Ocean. J. Climate, 13, 297–311. doi: 10.1175/1520-0442(2000)013<0297:IVOCRE>2.0.CO;2
[16] Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462. doi: 10.1002/qj.49710644905
[17] Gu, W., C. Y. Li, X. Wang, et al., 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26, 101–108. doi: 10.1007/s00376-009-0101-5
[18] Gushchina, D., and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 3669–3681. doi: 10.1175/MWR-D-11-00267.1
[19] Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 4012–4017. doi: 10.1002/grl.50729
[20] Ham, Y.-G., J.-S. Kug, J.-Y. Park, et al., 2013a: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112–116. doi: 10.1038/ngeo1686
[21] Ham, Y.-G., and J.-S. Kug, 2015: Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 3103–3117. doi: 10.1007/s00382-015-2527-z
[22] Hendon, H. H., M. C. Wheeler, and C. D. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531–543. doi: 10.1175/JCLI4003.1
[23] Hoell, A., M. Barlow, M. C. Wheeler, et al., 2014: Disruptions of El Niño–Southern Oscillation teleconnections by the Madden–Julian Oscillation. Geophys. Res. Lett., 41, 998–1004. doi: 10.1002/2013GL058648
[24] Hu, C. D., S. Yang, Q. G. Wu, et al., 2016: Reinspecting two types of El Niño: A new pair of Niño indices for improving real-time ENSO monitoring. Climate Dyn., 47, 4031–4049. doi: 10.1007/s00382-016-3059-x
[25] Huang, B., 2004: Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn., 23, 133–152. doi: 10.1007/s00382-004-0443-8
[26] Jansen, M. F., D. Dommenget, and N. Keenlyside, 2009: Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate, 22, 550–567. doi: 10.1175/2008JCLI2243.1
[27] Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[28] Kessler, W. S., 2001: EOF representations of the Madden–Julian Oscillation and its connection with ENSO. J. Climate, 14, 3055–3061. doi: 10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2
[29] Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian Oscillation into the ENSO cycle. J. Climate, 13, 3560–3575. doi: 10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2
[30] Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 1989–2000. doi: 10.1007/s00382-011-1159-1
[31] Kiladis, G. N., J. Dias, K. H. Straub, et al., 2013: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715. doi: 10.1175/MWR-D-13-00301.1
[32] Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932. doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2
[33] Kucharski, F., I.-S. Kang, R. Farneti, et al., 2011: Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett., 38, L03702. doi: 10.1029/2010GL046248
[34] Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704. doi: 10.1029/2011GL048237
[35] Lau, W. K.-M., and D. E. Waliser, 2011: Intraseasonal Variability in the Atmosphere–Ocean Climate System. Springer, Berlin Heidelberg, 614 pp, doi: 10.1007/978-3-642-13914-7.
[36] Li, C. Y., J. Ling, J. Song, et al., 2014: Research progress in China on the tropical atmospheric intraseasonal oscillation. J. Meteor. Res., 28, 671–692. doi: 10.1007/s13351-014-4015-5
[37] Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian Oscillation. J. Meteor. Res., 28, 1–33. doi: 10.1007/s13351-014-3087-6
[38] Lin, A. L., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21, 6304–6320. doi: 10.1175/2008JCLI2331.1
[39] Martín-Rey, M., I. Polo, B. Rodríguez-Fonseca, et al., 2012: Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Scientia Marina, 76, 105–116. doi: 10.3989/scimar.03610.19A
[40] Martín-Rey, M., B. Rodríguez-Fonseca, I. Polo, et al., 2014: On the Atlantic–Pacific Niños connection: A multidecadal modulated mode. Climate Dyn., 43, 3163–3178. doi: 10.1007/s00382-014-2305-3
[41] Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43. doi: 10.2151/jmsj1965.44.1_25
[42] McPhaden, M. J., X. B. Zhang, H. H. Hendon, et al., 2006: Large scale dynamics and MJO forcing of ENSO variability. Geophys. Res. Lett., 33, L16702. doi: 10.1029/2006GL026786
[43] Mo, K. C., and S. Häkkinen, 2001: Interannual variability in the tropical Atlantic and linkages to the Pacific. J. Climate, 14, 2740–2762. doi: 10.1175/1520-0442(2001)014<2740:IVITTA>2.0.CO;2
[44] Newman, M., P. D. Sardeshmukh, and C. Penland, 2009: How important is air–sea coupling in ENSO and MJO evolution? J. Climate, 22, 2958–2977. doi: 10.1175/2008JCLI2659.1
[45] Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483–496. doi: 10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2
[46] Polo, I., M. Martin-Rey, B. Rodriguez-Fonseca, et al., 2015: Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Climate Dyn., 44, 115–131. doi: 10.1007/s00382-014-2354-7
[47] Puy, M., J. Vialard, M. Lengaigne, et al., 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian Oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 2155–2178. doi: 10.1007/s00382-015-2695-x
[48] Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704. doi: 10.1029/2010GL046031
[49] Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, et al., 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705. doi: 10.1029/2009GL040048
[50] Saravanan, R., and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 2177–2194. doi: 10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2
[51] Sasaki, W., T. Doi, K. J. Richards, et al., 2014: Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Climate Dyn., 43, 2539–2552. doi: 10.1007/s00382-014-2072-1
[52] Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 3325–3345. doi: 10.1175/MWR3477.1
[53] Seiki, A., Y. N. Takayabu, K. Yoneyama, et al., 2009: The ocea-nic response to the Madden–Julian Oscillation and ENSO. SOLA, 5, 93–96. doi: 10.2151/sola.2009-024
[54] Seo, K.-H., and Y. Xue, 2005: MJO-related oceanic Kelvin waves and the ENSO cycle: A study with the NCEP global ocean data assimilation system. Geophys. Res. Lett., 32, L07712. doi: 10.1029/2005GL022511
[55] Shinoda, T., H. E. Hurlburt, and E. J. Metzger, 2011: Anomalous tropical ocean circulation associated with La Niña Modoki. J. Geophys. Res., 116, C12001. doi: 10.1029/2011JC007304
[56] Smith, T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296. doi: 10.1175/2007JCLI2100.1
[57] Tang, Y. M., and B. Yu, 2008a: MJO and its relationship to ENSO. J. Geophys. Res., 113, D14106. doi: 10.1029/2007JD009230
[58] Tang, Y. M., and B. Yu, 2008b: An analysis of nonlinear relationship between the MJO and ENSO. J. Meteor. Soc. Japan, 86, 867–881. doi: 10.2151/jmsj.86.867
[59] Timmermann, A., Y. Okumura, S.-I. An, et al., 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 4899–4919. doi: 10.1175/JCLI4283.1
[60] Uvo, C. B., C. A. Repelli, S. E. Zebiak, et al., 1998: The relationships between tropical Pacific and Atlantic SST and Northeast Brazil monthly precipitation. J. Climate, 11, 551–562. doi: 10.1175/1520-0442(1998)011<0551:TRBTPA>2.0.CO;2
[61] Wang, C. Z., S.-K. Lee, and C. R. Mechoso, 2010: Interhemisphe-ric influence of the Atlantic warm pool on the southeastern Pacific. J. Climate, 23, 404–418. doi: 10.1175/2009JCLI3127.1
[62] Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932. doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
[63] Wiedermann, M., A. Radebach, J. F. Donges, et al., 2016: A climate network-based index to discriminate different types of El Niño and La Niña. Geophys. Res. Lett., 43, 7176–7185. doi: 10.1002/2016GL069119
[64] Wright, P. B., 1986: Precursors of the Southern Oscillation. Int. J. Climatol., 6, 17–30. doi: 10.1002/joc.3370060103
[65] Wu, Z. W., J. P. Li, Z. H. Jiang, et al., 2012: Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian Summer monsoon and ENSO. Int. J. Climatol., 32, 794–800. doi: 10.1002/joc.2309
[66] Xue, Y., W. Higgins, and V. Kousky, 2002: Influences of the Madden–Julian Oscillation on temperature and precipitation in North America during ENSO-neutral and weak ENSO winters. Proc. Workshop on Prospects for Improved Forecasts of Weather and Short-Term Climate Variability on Subseasonal Time Scales, Mitchellville, MD, NASA Goddard Space Flight Center, 4–4.
[67] Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 1601–1612. doi: 10.1175/1520-0442-16.10.1601
[68] Yan, X., and J. H. Ju, 2016: Analysis of the major characteristics of persistent MJO anomalies in summer. Chinese J. Atmos. Sci., 40, 1048–1058. (in Chinese) doi: 10.3878/j.issn.1006-9895.1601.15248
[69] Yan, X., J. H. Ju, and W. W. Gan, 2016: The influence of persistent anomaly of MJO on ENSO. J. Trop. Meteor., 22, 24–36. doi: 10.16555/j.1006-8775.2016.S1.003
[70] Yu, J. H., T. Li, Z. M. Tan, et al., 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865–877. doi: 10.1007/s00382-015-2618-x
[71] Zavala-Garay, J., C. Zhang, A. M. Moore, et al., 2005: The linear response of ENSO to the Madden–Julian Oscillation. J. Climate, 18, 2441–2459. doi: 10.1175/JCLI3408.1
[72] Zavala-Garay, J., C. Zhang, A. M. Moore, et al., 2008: Sensitivity of hybrid ENSO models to unresolved atmospheric variability. J. Climate, 21, 3704–3721. doi: 10.1175/2007JCLI1188.1
[73] Zhang, C. D., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian Oscillation in the equatorial Pacific. J. Climate, 15, 2429–2445. doi: 10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2
[74] Zuo, J. Q., W. J. Li, C. H. Sun, et al., 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 1173–1186. doi: 10.1007/s00376-012-2125-5