[1] Bartier, P. M., and C. P. Keller, 1996: Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci., 22, 795–799. doi: 10.1016/0098-3004(96)00021-0
[2] Beven, K., and J. Freer, 2001: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol., 249, 11–29. doi: 10.1016/S0022-1694(01)00421-8
[3] Bitew, M. M., and M. Gebremichael, 2011: Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour. Res., 47, W06526. doi: 10.1029/2010WR009917
[4] Casse, C., M. Gosset, C. Peugeot, et al., 2015: Potential of satellite rainfall products to predict Niger River flood events in Niamey. Atmos. Res., 163, 162–176. doi: 10.1016/j.atmosres.2015.01.010
[5] Chen, T., L. L. Ren, F. Yuan, et al., 2019: Merging ground and satellite-based precipitation data sets for improved hydrological simulations in the Xijiang River basin of China. Stoch. Environ. Res. Risk Assess., 33, 1893–1905. doi: 10.1007/s00477-019-01731-w
[6] Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[7] Duan, Q. Y., S. Sorooshian, and V. K. Gupta, 1994: Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 158, 265–284. doi: 10.1016/0022-1694(94)90057-4
[8] Duan, Z., J. Z. Liu, Y. Tuo, et al., 2016: Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ., 573, 1536–1553. doi: 10.1016/j.scitotenv.2016.08.213
[9] Duan, Z., Y. Tuo, J. Z. Liu, et al., 2019: Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol., 569, 612–626. doi: 10.1016/j.jhydrol.2018.12.026
[10] Friedl, M. A., D. K. McIver, J. C. F. Hodges, et al., 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287–302. doi: 10.1016/S0034-4257(02)00078-0
[11] Funk, C., P. Peterson, M. Landsfeld, et al., 2015: The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data, 2, 150066. doi: 10.1038/sdata.2015.66
[12] Gao, X. C., Q. Zhu, Z. Y. Yang, et al., 2018: Evaluation and hydrological application of CMADS against TRMM 3B42V7, PERSIANN-CDR, NCEP-CFSR, and gauge-based datasets in Xiang River basin of China. Water, 10, 1225. doi: 10.3390/w10091225
[13] Gao, Z., D. Long, G. Q. Tang, et al., 2017: Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China’s Yangtze River basin. J. Hydrol., 550, 478–496. doi: 10.1016/j.jhydrol.2017.05.025
[14] Gebregiorgis, A. S., P.-E. Kirstetter, Y. E. Hong, et al., 2018: To what extent is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPA-RT? J. Geophys. Res. Atmos., 123, 1694–1707. doi: 10.1002/2017JD027606
[15] Gelaro, R., W. McCarty, M. J. Suárez, et al., 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454. doi: 10.1175/JCLI-D-16-0758.1
[16] Golian, S., S. Moazami, P.-E. Kirstetter, et al., 2015: Evaluating the performance of merged multi-satellite precipitation products over a complex terrain. Water Resour. Manag., 29, 4885–4901. doi: 10.1007/s11269-015-1096-6
[17] Golian, S., M. Javadian, and A. Behrangi, 2019: On the use of satellite, gauge, and reanalysis precipitation products for drought studies. Environ. Res. Lett., 14, 075005. doi: 10.1088/1748-9326/ab2203
[18] Guo, B. B., J. Zhang, T. B. Xu, et al., 2018: Applicability assessment and uncertainty analysis of multi-precipitation datasets for the simulation of hydrologic models. Water, 10, 1611. doi: 10.3390/w10111611
[19] Guo, H., A. M. Bao, T. Liu, et al., 2016: Evaluation of PERSIANN-CDR for meteorological drought monitoring over China. Remote Sens., 8, 379. doi: 10.3390/rs8050379
[20] Hou, A. Y., R. K. Kakar, S. Neeck, et al., 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701–722. doi: 10.1175/BAMS-D-13-00164.1
[21] Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55. doi: 10.1175/JHM560.1
[22] Huffman, G. J., D. T. Bolvin, D. Braithwaite, et al., 2019: NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Document (ATBD) Version 06, NASA, Washington, 34 pp.
[23] Jiang, S. H., L. L. Ren, Y. Hong, et al., 2012: Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol., 452–453, 213–225. doi: 10.1016/j.jhydrol.2012.05.055
[24] Jiang, S. H., L. L. Ren, Y. Hong, et al., 2014: Improvement of multi-satellite real-time precipitation products for ensemble streamflow simulation in a middle latitude basin in South China. Water Resour. Manag., 28, 2259–2278. doi: 10.1007/s11269-014-0612-4
[25] Jiang, S. H., L. L. Ren, C.-Y. Xu, et al., 2018a: Quantifying multi-source uncertainties in multi-model predictions using the Bayesian model averaging scheme. Hydrol. Res., 49, 954–970. doi: 10.2166/nh.2017.272
[26] Jiang, S. H., S. Y. Liu, L. L. Ren, et al., 2018b: Hydrologic evaluation of six high resolution satellite precipitation products in capturing extreme precipitation and streamflow over a me-dium-sized basin in China. Water, 10, 25. doi: 10.3390/w10010025
[27] Jiang, S. H., L. L. Ren, C.-Y. Xu, et al., 2018c: Statistical and hydrological evaluation of the latest Integrated Multi-SatellitE Retrievals for GPM (IMERG) over a midlatitude humid basin in South China. Atmos. Res., 214, 418–429. doi: 10.1016/j.atmosres.2018.08.021
[28] Jiang, S. H., M. H. Wang, L. L. Ren, et al., 2019: A framework for quantifying the impacts of climate change and human activities on hydrological drought in a semiarid basin of northern China. Hydrol. Process., 33, 1075–1088. doi: 10.1002/hyp.13386
[29] Joyce, R. J., J. E. Janowiak, P. A. Arkin, et al., 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503. doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
[30] Lai, C. G., R. D. Zhong, Z. L. Wang, et al., 2019: Monitoring hydrological drought using long-term satellite-based precipitation data. Sci. Total Environ., 649, 1198–1208. doi: 10.1016/j.scitotenv.2018.08.245
[31] Li, Y., Y. J. Wang, J. H. Zheng, et al., 2019: Investigating spatial and temporal variation of hydrological processes in western China driven by CMADS. Water, 11, 435. doi: 10.3390/w11030435
[32] Li, Z., D. W. Yang, and Y. Hong, 2013: Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. J. Hydrol., 500, 157–169. doi: 10.1016/j.jhydrol.2013.07.023
[33] Liu, J., D. H. Shanguan, S. Y. Liu, et al., 2018: Evaluation and hydrological simulation of CMADS and CFSR reanalysis datasets in the Qinghai–Tibet Plateau. Water, 10, 513. doi: 10.3390/w10040513
[34] Maggioni, V., and C. Massari, 2018: On the performance of satellite precipitation products in riverine flood modeling: A review. J. Hydrol., 558, 214–224. doi: 10.1016/j.jhydrol.2018.01.039
[35] Maggioni, V., P. C. Meyers, and M. D. Robinson, 2016: A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. J. Hydrometeor., 17, 1101–1117. doi: 10.1175/JHM-D-15-0190.1
[36] Mei, Y. W., E. I. Nikolopoulos, E. N. Anagnostou, et al., 2016: Evaluating satellite precipitation error propagation in runoff simulations of mountainous basins. J. Hydrometeor., 17, 1407–1423. doi: 10.1175/JHM-D-15-0081.1
[37] Meng, X. Y., and H. Wang, 2017: Significance of the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) of East Asia. Water, 9, 765. doi: 10.3390/w9100765
[38] Meng, X. Y., H. Wang, C. X. Shi, et al., 2018: Establishment and evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS). Water, 10, 1555. doi: 10.3390/w10111555
[39] Saha, S., S. Moorthi, H.-L. Pan, et al., 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1058. doi: 10.1175/2010BAMS3001.1
[40] Sahoo, A. K., J. Sheffield, M. Pan, et al., 2015: Evaluation of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens. Environ., 159, 181–193. doi: 10.1016/j.rse.2014.11.032
[41] Seyyedi, H., E. N. Anagnostou, E. Beighley, et al., 2015: Hydrologic evaluation of satellite and reanalysis precipitation datasets over a mid-latitude basin. Atmos. Res., 164–165, 37–48. doi: 10.1016/j.atmosres.2015.03.019
[42] Shi, P., C. Chen, R. Srinivasan, et al., 2011: Evaluating the SWAT model for hydrological modeling in the Xixian Watershed and a comparison with the XAJ model. Water Resour. Manag., 25, 2595–2612. doi: 10.1007/s11269-011-9828-8
[43] Skofronick-Jackson, G., W. A. Petersen, W. Berg, et al., 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 1679–1695. doi: 10.1175/BAMS-D-15-00306.1
[44] Sorooshian, S., K.-L. Hsu, X. G. Gao, et al., 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 2035–2046. doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
[45] Su, J. B., H. S. Lü, J. Q. Wang, et al., 2017: Evaluating the applicability of four latest satellite–gauge combined precipitation estimates for extreme precipitation and streamflow predictions over the upper Yellow River basins in China. Remote Sens., 9, 1176. doi: 10.3390/rs9111176
[46] Sulugodu, B., and P. C. Deka, 2019: Evaluating the performance of CHIRPS satellite rainfall data for streamflow forecasting. Water Resour. Manag., 33, 3913–3927. doi: 10.1007/s11269-019-02340-6
[47] Sun, Q. H., C. Y. Miao, Q. Y. Duan, et al., 2018: A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys., 56, 79–107. doi: 10.1002/2017RG000574
[48] Sun, R. C., H. L. Yuan, X. L. Liu, et al., 2016: Evaluation of the latest satellite–gauge precipitation products and their hydrologic applications over the Huaihe River basin. J. Hydrol., 536, 302–319. doi: 10.1016/j.jhydrol.2016.02.054
[49] Tan, M. L., A. L. Ibrahim, Z. Duan, et al., 2015: Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia. Remote Sens., 7, 1504–1528. doi: 10.3390/rs70201504
[50] Tian, Y. D., C. D. Peters-Lidard, and J. B. Eylander, 2010: Real-time bias reduction for satellite-based precipitation estimates. J. Hydrometeor., 11, 1275–1285. doi: 10.1175/2010JHM1246.1
[51] Vu, T. T., L. Li, and K. S. Jun, 2018: Evaluation of multi-satellite precipitation products for streamflow simulations: A case study for the Han River basin in the Korean Peninsula, East Asia. Water, 10, 642. doi: 10.3390/w10050642
[52] Wang, N., W. B. Liu, F. B. Sun, et al., 2020: Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmos. Res., 234, 104746. doi: 10.1016/j.atmosres.2019.104746
[53] Wang, Z. L., R. D. Zhong, C. G. Lai, et al., 2017: Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos. Res., 196, 151–163. doi: 10.1016/j.atmosres.2017.06.020
[54] Wu, H., R. F. Adler, Y. D. Tian, et al., 2014: Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res., 50, 2693–2717. doi: 10.1002/2013WR014710
[55] Wu, Z. Y., Z. G. Xu, F. Wang, et al., 2018: Hydrologic evaluation of multi-source satellite precipitation products for the upper Huaihe River basin, China. Remote Sens., 10, 840. doi: 10.3390/rs10060840
[56] Xu, H. L., C.-Y. Xu, S. D. Chen, et al., 2016: Similarity and difference of global reanalysis datasets (WFD and APHRODITE) in driving lumped and distributed hydrological models in a humid region of China. J. Hydrol., 542, 343–356. doi: 10.1016/j.jhydrol.2016.09.011
[57] Xue, X. W., Y. Hong, A. S. Limaye, et al., 2013: Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? J. Hydrol., 499, 91–99. doi: 10.1016/j.jhydrol.2013.06.042
[58] Yong, B., L.-L. Ren, Y. Hong, et al., 2010: Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res., 46, W07542. doi: 10.1029/2009WR008965
[59] Yong, B., B. Chen, Y. D. Tian, et al., 2016: Error-component analysis of TRMM-based multi-satellite precipitation estimates over mainland China. Remote Sens., 8, 440. doi: 10.3390/rs8050440
[60] Yuan, F., L. M. Zhang, K. W. W. Win, et al., 2017: Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar. Remote Sens., 9, 302. doi: 10.3390/rs9030302
[61] Yuan, F., L. M. Zhang, K. M. W. Soe, et al., 2019: Applications of TRMM- and GPM-era multiple-satellite precipitation products for flood simulations at sub-daily scales in a sparsely gauged watershed in Myanmar. Remote Sens., 11, 140. doi: 10.3390/rs11020140
[62] Zhang, S. J., D. H. Wang, Z. K. Qin, et al., 2018: Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau. J. Meteor. Res., 32, 324–336. doi: 10.1007/s13351-018-7067-0
[63] Zhang, Z. X., J. X. Tian, Y. H. Huang, et al., 2019: Hydrologic evaluation of TRMM and GPM IMERG satellite-based precipitation in a humid basin of China. Remote Sens., 11, 431. doi: 10.3390/rs11040431
[64] Zhao, F. B., Y. P. Wu, L. J. Qiu, et al., 2018: Parameter uncertainty analysis of the SWAT model in a mountain-loess transitional watershed on the Chinese Loess Plateau. Water, 10, 690. doi: 10.3390/w10060690
[65] Zhao, R.-J., 1992: The Xinanjiang model applied in China. J. Hydrol., 135, 371–381. doi: 10.1016/0022-1694(92)90096-E
[66] Zhong, R. D., X. H. Chen, C. G. Lai, et al., 2019: Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydrol., 568, 343–359. doi: 10.1016/j.jhydrol.2018.10.072
[67] Zhou, Z. H., X. C. Gao, Z. Y. Yang, et al., 2019: Evaluation of hydrological application of CMADS in Jinhua River basin, China. Water, 11, 138. doi: 10.3390/w11010138
[68] Zhu, Q., X. C. Gao, Y.-P. Xu, et al., 2019: Merging multi-source precipitation products or merging their simulated hydrological flows to improve streamflow simulation. Hydrol. Sci. J., 64, 910–920. doi: 10.1080/02626667.2019.1612522