[1] Carrio, G. G., and W. R. Cotton, 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11, 2557–2567. doi: 10.5194/acp-11-2557-2011
[2] Chen, F., and J., Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
[3] Chin, M., R. B. Rood, S. J. Lin, et al., 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res. Atmos., 105, 671–687. doi: 10.1029/2000JD900384
[4] Chin, M., P. Ginoux, S. Kinne, et al., 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461–483. doi: 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
[5] Cotton, W. R., H. N. Zhang, G. M. McFarquhar, et al., 2007: Should we consider polluting hurricanes to reduce their intensity? J. Wea. Mod., 39, 70–73.
[6] Ek, M. B., K. B. Mitchell, Y. Lin, et al., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos., 108, 8851. doi: 10.1029/2002JD003296
[7] Evan, A. T., J. P. Kossin, C. E. Chung, et al., 2011: Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature, 479, 94–97. doi: 10.1038/nature10552
[8] Fan, J. W., T. L. Yuan, J. M. Comstock, et al., 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. Atmos., 114, D22206. doi: 10.1029/2009JD012352
[9] Fan, J. W., L. R. Leung, Z. Q. Li, et al., 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res. Atmos., 117, D00K36. doi: 10.1029/2011JD016537
[10] Gerber, H. E., 1985: Relative Humidity Parameterization of the Navy Aerosol Model (NAM). Report No. NRL Report 8956, Naval Research Laboratory, Washington, 17 pp.
[11] Gong, S. L., L. A.Barrie, and J. P.Blanchet, 1997a: Modeling sea-salt aerosols in the atmosphere: 1. Model development. J. Geophys. Res. Atmos., 102, 3805–3818. doi: 10.1029/96JD02953
[12] Gong, S. L., L. A.Barrie, J. M.Prospero, et al., 1997b: Modeling sea-salt aerosols in the atmosphere: 2. Atmospheric concentrations and fluxes. J. Geophys. Res. Atmos., 102, 3819–3830. doi: 10.1029/96JD03401
[13] Grell, G. A., S. E. Peckham, R. Schmitz, et al., 2005: Fully coupled " online” chemistry within the WRF model. Atmos. Environ., 39, 6957–6975. doi: 10.1016/j.atmosenv.2005.04.027
[14] Hazra, A., P. Mukhopadhyay, S. Taraphdar, et al., 2013: Impact of aerosols on tropical cyclones: An investigation using convection-permitting model simulation. J. Geophys. Res. Atmos., 118, 7157–7168. doi: 10.1002/jgrd.50546
[15] Herbener, S. R., S. C. van den Heever, G. G. Carrió, et al., 2014: Aerosol indirect effects on idealized tropical cyclone dynamics. J. Atmos. Sci., 71, 2040–2055. doi: 10.1175/JAS-D-13-0202.1
[16] Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi: 10.1175/MWR3199.1
[17] Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol., 8, 38–55. doi: 10.1175/JHM560.1
[18] Iacono, M. J., E. J. Mlawer, S. A. Clough, et al., 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res. Atmos., 105, 14873–14890. doi: 10.1029/2000JD900091
[19] Jiang, B. L., B. Huang, W. S. Lin, et al., 2016: Investigation of the effects of anthropogenic pollution on typhoon precipitation and microphysical processes using WRF-Chem. J. Atmos. Sci., 73, 1593–1610. doi: 10.1175/JAS-D-15-0202.1
[20] Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448–460. doi: 10.1175/1520-0469(1982)039<0448:TROGAU>2.0.CO;2
[21] Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639–2663. doi: 10.1256/qj.04.62
[22] Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008a: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 1721–1748. doi: 10.1175/2007JAS2515.1
[23] Khain, A. P., N. Cohen, B. Lynn, et al., 2008b: Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci., 65, 3652–3677. doi: 10.1175/2008JAS2678.1
[24] Li, G. H., Y. Wang, and R. Y. Zhang, 2008: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol–cloud interaction. J. Geophys. Res. Atmos., 113, D15211. doi: 10.1029/2007JD009361
[25] Li, W. B., 2004: Modelling air–sea fluxes during a western Pacific typhoon: Role of sea spray. Adv. Atmos. Sci., 21, 269–276. doi: 10.1007/BF02915713
[26] Lin, W. S., S. S. Xu, and C.-H. Sui, 2011: A numerical simulation of the effect of the number concentration of cloud droplets on Typhoon Chanchu. Meteor. Atmos. Phys., 113, 99–108. doi: 10.1007/s00703-011-0152-x
[27] Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092. doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
[28] Liu, Y. G., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 1539–1548. doi: 10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2
[29] Miller, M. J., A. C. M. Beljaars, and T. N. Palmer, 1992: The sensitivity of the ECMWF model to the parameterization of evaporation from the tropical oceans. J. Climate, 5, 418–434. doi: 10.1175/1520-0442(1992)005<0418:TSOTEM>2.0.CO;2
[30] Mlawer, E. J., S. J. Taubman, P.D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682. doi: 10.1029/97JD00237
[31] Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1986: A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps, E. C. Monahan, and G. M. Niocaill, Eds., Springer, Dordrecht, 167–174, doi: 10.1007/978-94-009-4668-2_16.
[32] Mueller, J. A., and F. Veron, 2014: Impact of sea spray on air–sea fluxes. Part II: Feedback effects. J. Phys. Oceanogr., 44, 2835–2853. doi: 10.1175/JPO-D-13-0246.1
[33] Pan, B. W., Y. Wang, J. X. Hu, et al., 2018: Impacts of Saharan dust on Atlantic regional climate and implications for tropical cyclones. J. Climate, 31, 7621–7644. doi: 10.1175/JCLI-D-16-0776.1
[34] Rosenfeld, D., and W. L. Woodley, 2003: Closing the 50-year circle: From cloud seeding to space and back to climate change through precipitation physics. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM). W. K. Tao, and R. Adler, Eds., Meteor. Monogr., 51, 59–80, American Meteorological Society.
[35] Rosenfeld, D., R. Lahav, A. Khain, et al., 2002: The role of sea spray in cleansing air pollution over ocean via cloud processes. Science, 297, 1667–1670. doi: 10.1126/science.1073869
[36] Rosenfeld, D., A. Khain, B. Lynn, et al., 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys., 7, 3411–3424. doi: 10.5194/acp-7-3411-2007
[37] Rosenfeld, D., U. Lohmann, G. B. Raga, et al., 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313. doi: 10.1126/science.1160606
[38] Rosenfeld, D., M. Clavner, and R. Nirel, 2011: Pollution and dust aerosols modulating tropical cyclones intensities. Atoms. Res., 102, 66–76. doi: 10.1016/j.atmosres.2011.06.006
[39] Rosenfeld, D., W. L. Woodley, A. Khain, et al., 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 987–1001. doi: 10.1175/BAMS-D-11-00147.1
[40] Wang, Y., A. Khalizov, M. Levy, et al., 2013: New directions: Light absorbing aerosols and their atmospheric impacts. Atmos. Environ., 81, 713–715. doi: 10.1016/j.atmosenv.2013.09.034
[41] Wang, Y., K. H. Lee, Y. Lin, et al., 2014: Distinct effects of anthropogenic aerosols on tropical cyclones. Nat. Clim. Change, 4, 368–373. doi: 10.1038/nclimate2144
[42] Xu, S. S., W. S. Lin, and C.-H. Sui, 2013: The separation of convective and stratiform precipitation regions of simulated Typhoon Chanchu and its sensitivity to the number concentration of cloud droplets. Atmos. Res., 122, 229–236. doi: 10.1016/j.atmosres.2012.10.027
[43] Zhang, H. N., G. M. McFarquhar, S. M. Saleeby, et al., 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812. doi: 10.1029/2007GL029876