[1] Altman, J., O. N. Ukhvatkina, A. M. Omelko, et al., 2018: Poleward migration of the destructive effects of tropical cyclones during the 20th century. Proc. Natl. Acad. Sci. USA, 115, 11543–11548. doi: 10.1073/pnas.1808979115
[2] Cai, W. J., L. X. Wu, M. Lengaigne, et al., 2019: Pantropical climate interactions. Science, 363, eaav4236. doi: 10.1126/science.aav4236
[3] Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819–4834. doi: 10.1175/jcli4282.1
[4] Cao, X., R. G. Wu, and X. Xiao, 2018: A new perspective of intensified impact of El Niño−Southern Oscillation Modoki on tropical cyclogenesis over the western North Pacific around 1990s. Int. J. Climatol., 38, 4262–4275. doi: 10.1002/joc.5667
[5] Chand, S. S., K. J. Tory, H. Ye, et al., 2017: Projected increase in El Niño-driven tropical cyclone frequency in the Pacific. Nat. Climate Change, 7, 123–127. doi: 10.1038/nclimate3181
[6] Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944. doi: 10.1175/1520-0442(2002)015<2934:tivitg>2.0.co;2
[7] Daloz, A. S., and S. J. Camargo, 2017: Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis? Climate Dyn., 50, 705–715. doi: 10.1007/s00382-017-3636-7
[8] Du, Y., L. Yang, and S. P. Xie, 2011: Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315–322. doi: 10.1175/2010jcli3890.1
[9] Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, American Meteorological Society, Miami, 240–241.
[10] Fan, T. T., S. B. Xu, F. Huang, et al., 2019: The phase differences of the interdecadal variabilities of tropical cyclone activity in the peak and late seasons over the western North Pacific. Theor. Appl. Climatol., 136, 77–83. doi: 10.1007/s00704-018-2465-x
[11] Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462. doi: 10.1002/qj.49710644905
[12] Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, Berkshire, Britain, 155–218.
[13] Ham, Y. G., J. S. Kug, J. Y. Park, et al., 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112–116. doi: 10.1038/ngeo1686
[14] He, H. Z., J. Yang, D. Y. Gong, et al., 2015: Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Climate Dyn., 45, 3317–3329. doi: 10.1007/s00382-015-2541-1
[15] He, Z. Q., and R. G. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn., 42, 2323–2337. doi: 10.1007/s00382-014-2123-7
[16] Hong, C. C., T. C. Chang, and H. H. Hsu, 2014: Enhanced relationship between the tropical Atlantic SST and the summertime western North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos., 119, 3715–3722. doi: 10.1002/2013JD021394
[17] Hsu, P. C., P. S. Chu, H. Murakami, et al., 2014: An abrupt decrease in the late-season typhoon activity over the western North Pacific. J. Climate, 27, 4296–4312. doi: 10.1175/jcli-d-13-00417.1
[18] Hsu, P.-C., T.-H. Lee, C.-H. Tsou, et al., 2017: Role of scale interactions in the abrupt change of tropical cyclone in autumn over the western North Pacific. Climate Dyn., 49, 3175–3192. doi: 10.1007/s00382-016-3504-x
[19] Hu, C. D., C. Y. Zhang, S. Yang, et al., 2018: Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO. Climate Dyn., 51, 2455–2465. doi: 10.1007/s00382-017-4022-1
[20] Hu, Z. Z., A. Kumar, H. L. Ren, et al., 2013: Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 2601–2613. doi: 10.1175/jcli-d-12-00265.1
[21] Hu, Z. Z., A. Kumar, B. H. Huang, et al., 2020: The interdecadal shift of ENSO properties in 1999/2000: A review. J. Climate, 33, 4441–4462. doi: 10.1175/JCLI-D-19-0316.1
[22] Huangfu, J. L., R. H. Huang, W. Chen, et al., 2017a: Interdecadal variation of tropical cyclone genesis and its relationship to the monsoon trough over the western North Pacific. Int. J. Climatol., 37, 3587–3596. doi: 10.1002/joc.4939
[23] Huangfu, J. L., R. H. Huang, and W. Chen, 2017b: Interdecadal increase of tropical cyclone genesis frequency over the western North Pacific in May. Int. J. Climatol., 37, 1127–1130. doi: 10.1002/joc.4760
[24] Jin, D. C., and L. W. Huo, 2018: Influence of tropical Atlantic sea surface temperature anomalies on the East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 144, 1490–1500. doi: 10.1002/qj.3296
[25] Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[26] Kim, H. K., K. H. Seo, S. W. Yeh, et al., 2020: Asymmetric impact of Central Pacific ENSO on the reduction of tropical cyclone genesis frequency over the western North Pacific since the late 1990s. Climate Dyn., 54, 661–673. doi: 10.1007/s00382-019-05020-8
[27] Knapp, K. R., M. C. Kruk, D. H. Levinson, et al., 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363–376. doi: 10.1175/2009BAMS2755.1
[28] Knutson, T. R., J. L. McBride, J. Chan, et al., 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157–163. doi: 10.1038/ngeo779
[29] Knutson, T., S. J. Camargo, J. C. L. Chan, et al., 2019: Tropical cyclones and climate change assessment: Part I: Detection and attribution. Bull. Amer. Meteor. Soc., 100, 1987–2007. doi: 10.1175/BAMS-D-18-0189.1
[30] Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349–352. doi: 10.1038/nature13278
[31] Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29, 5725–5739. doi: 10.1175/JCLI-D-16-0076.1
[32] Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636–651. doi: 10.1175/1520-0493(1994)122<0636:AEAOTR>2.0.CO;2
[33] Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Climate, 26, 2614–2630. doi: 10.1175/JCLI-D-12-00053.1
[34] Lübbecke, J. F., and M. J. McPhaden, 2014: Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Climate, 27, 2577–2587. doi: 10.1175/JCLI-D-13-00438.1
[35] McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706. doi: 10.1029/2012GL051826
[36] McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709. doi: 10.1029/2011GL048275
[37] Mendelsohn, R., K. Emanuel, S. Chonabayashi, et al., 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205–209. doi: 10.1038/nclimate1357
[38] Oey, L. Y., and S. Chou, 2016: Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades. J. Geophys. Res. Oceans, 121, 5181–5192. doi: 10.1002/2016JC011777
[39] Prigent, A., J. F. Lübbecke, T. Bayr, et al., 2020: Weakened SST variability in the tropical Atlantic Ocean since 2000. Climate Dyn., 54, 2731–2744. doi: 10.1007/s00382-020-05138-0
[40] Sharmila, S., and K. J. E. Walsh, 2018: Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nat. Climate Change, 8, 730–736. doi: 10.1038/s41558-018-0227-5
[41] Shen, Y. X., Y. Sun, Z. Zhong, et al., 2018: Sensitivity experiments on the poleward shift of tropical cyclones over the western North Pacific under warming ocean conditions. J. Meteor. Res., 32, 560–570. doi: 10.1007/s13351-018-8047-0
[42] Smith, T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296. doi: 10.1175/2007jcli2100.1
[43] Studholme, J., and S. Gulev, 2018: Concurrent changes to Hadley circulation and the meridional distribution of tropical cyclones. J. Climate, 31, 4367–4389. doi: 10.1175/jcli-d-17-0852.1
[44] Tu, J. Y., C. Chou, P. Huang, et al., 2011: An abrupt increase of intense typhoons over the western North Pacific in early summer. Environ. Res. Lett., 6, 034013. doi: 10.1088/1748-9326/6/3/034013
[45] Walsh, K. J. E., S. J. Camargo, G. A. Vecchi, et al., 2015: Hurricanes and climate: The U.S. CLIVAR Working Group on Hurricanes. Bull. Amer. Meteor. Soc., 96, 997–1017. doi: 10.1175/bams-d-13-00242.1
[46] Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658. doi: 10.1175/1520-0442(2002)015<1643:hseeat>2.0.co;2
[47] Wang, C., B. Wang, and L. G. Wu, 2019: Abrupt breakdown of the predictability of early season typhoon frequency at the beginning of the twenty-first century. Climate Dyn., 52, 3809–3822. doi: 10.1007/s00382-018-4350-9
[48] Wang, C. Z., L. Wang, X. Wang, et al., 2016: North–south variations of tropical storm genesis locations in the Western Hemisphere. Geophys. Res. Lett., 43, 11367–11374. doi: 10.1002/2016gl071440
[49] Wang, L., 2016: Contrasting two spring SST predictors for the number of western North Pacific tropical cyclones. Atmos. Ocean. Sci. Lett., 9, 420–427. doi: 10.1080/16742834.2016.1231009
[50] Wang, L., 2017: Weakened interannual variability of the contrast in rainfall between the eastern equatorial Pacific and equatorial Atlantic since 2000. Atmos. Ocean. Sci. Lett., 10, 198–205. doi: 10.1080/16742834.2017.1286632
[51] Wang, L., and J. Y. Yu, 2018: A recent shift in the monsoon centers associated with the tropospheric biennial oscillation. J. Climate, 31, 325–340. doi: 10.1175/jcli-d-17-0349.1
[52] Wang, L., J. Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887. doi: 10.1038/ncomms14887
[53] Wu, L. G., C. Wang, and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 1537–1542. doi: 10.1002/2015gl063450
[54] Wu, M. M., and L. Wang, 2019: Enhanced correlation between ENSO and western North Pacific monsoon during boreal summer around the 1990s. Atmos. Ocean. Sci. Lett., 12, 376–384. doi: 10.1080/16742834.2019.1641397
[55] Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327–340. doi: 10.1007/s00382-012-1427-8
[56] Xie, S. P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747. doi: 10.1175/2008JCLI2544.1
[57] Xie, S. P., Y. Kosaka, Y. Du, et al., 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432. doi: 10.1007/s00376-015-5192-6
[58] Xu, S. B., and B. Wang, 2014: Enhanced western North Pacific tropical cyclone activity in May in recent years. Climate Dyn., 42, 2555–2563. doi: 10.1007/s00382-013-1921-7
[59] Yao, X. P., D. J. Zhao, and Y. Li, 2020: Autumn tropical cyclones over the western North Pacific during 1949–2016: A statistical study. J. Meteor. Res., 34, 150–162. doi: 10.1007/s13351-020-9019-8
[60] Yu, J. Y., P. K. Kao, H. Paek, et al., 2015: Linking emergence of the central Pacific El Niño to the Atlantic Multidecadal Oscillation. J. Climate, 28, 651–662. doi: 10.1175/JCLI-D-14-00347.1
[61] Yuan, Y., S. Yang, and Z. Q. Zhang, 2012: Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: Possible effects of Indian Ocean SST. J. Climate, 25, 7867–7883. doi: 10.1175/jcli-d-12-00004.1
[62] Zhang, Q., L. G. Wu, and Q. F. Liu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489–496. doi: 10.1175/2008BAMS2631.1
[63] Zhao, H. K., and C. Z. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315–328. doi: 10.1007/s00382-015-2837-1
[64] Zhao, H. K., and C. Z. Wang, 2019: On the relationship between ENSO and tropical cyclones in the western North Pacific during the boreal summer. Climate Dyn., 52, 275–288. doi: 10.1007/s00382-018-4136-0
[65] Zhao, H. K., X. Y. Duan, G. B. Raga, et al., 2018: Changes in characteristics of rapidly intensifying western North Pacific tropical cyclones related to climate regime shifts. J. Climate, 31, 8163–8179. doi: 10.1175/jcli-d-18-0029.1
[66] Zhao, H. K., J. Zhang, P. J. Klotzbach, et al., 2019a: Recent increased covariability of tropical cyclogenesis latitude and longitude over the western North Pacific during the extended boreal summer. J. Climate, 32, 8167–8179. doi: 10.1175/jcli-d-19-0009.1
[67] Zhao, H. K., S. H. Chen, and P. J. Klotzbach, 2019b: Recent strengthening of the relationship between the western North Pacific monsoon and western North Pacific tropical cyclone activity during the boreal summer. J. Climate, 32, 8283–8299. doi: 10.1175/jcli-d-19-0016.1
[68] Zhao, H. K., S. H. Chen, G. B. Raga, et al., 2019c: Recent decrease in genesis productivity of tropical cloud clusters over the western North Pacific. Climate Dyn., 52, 5819–5831. doi: 10.1007/s00382-018-4477-8
[69] Zhao, J. W., R. F. Zhan, Y. Q. Wang, et al., 2018: Contribution of the interdecadal Pacific oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Climate, 31, 8211–8224. doi: 10.1175/JCLI-D-18-0202.1