[1] Abrha, A. Z., 2009: Assessment of spatial and temporal variability of river discharge, sediment yield and sediment-fixed nutrient export in Geba River catchment, northern Ethiopia. Ph.D. dissertation, Katholieke Universiteit Leuven, Belgium, 203 pp.
[2] Agutu, N. O., J. L. Awange, A. Zerihun, et al., 2017: Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ., 194, 287–302. doi: 10.1016/j.rse.2017.03.041
[3] Aslami, F., A. Ghorbani, B. Sobhani, et al., 2019: Comprehensive comparison of daily IMERG and GSMaP satellite precipitation products in Ardabil Province, Iran. Int. J. Remote Sens., 40, 3139–3153. doi: 10.1080/01431161.2018.1539274
[4] Awange, J. L., K. X. Hu, and M. Khaki, 2019: The newly merged satellite remotely sensed, gauge and reanalysis-based Multi-Source Weighted-Ensemble Precipitation: Evaluation over Australia and Africa (1981–2016). Sci. Total Environ., 670, 448–465. doi: 10.1016/j.scitotenv.2019.03.148
[5] Ayoub, A. B., F. Tangang, L. Juneng, et al., 2020: Evaluation of gridded precipitation datasets in Malaysia. Remote Sens., 12, 613. doi: 10.3390/rs12040613
[6] Azimi, S., A. B. Dariane, S. Modanesi, et al., 2020: Assimilation of Sentinel 1 and SMAP-based satellite soil moisture retrievals into SWAT hydrological model: the impact of satellite revisit time and product spatial resolution on flood simulations in small basins. J. Hydrol., 581, 124367. doi: 10.1016/j.jhydrol.2019.124367
[7] Balsamo, G., C. Albergel, A. Beljaars, et al., 2015: ERA-Interim/Land: a global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389–407. doi: 10.5194/hess-19-389-2015
[8] Bayissa, Y., T. Tadesse, G. Demisse, et al., 2017: Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens., 9, 669. doi: 10.3390/rs9070669
[9] Boke, A. S., 2017: Comparative evaluation of spatial interpolation methods for estimation of missing meteorological variables over Ethiopia. J. Water Resour. Prot., 9, 945–959. doi: 10.4236/jwarp.2017.98063
[10] Climate Change Service (C3S), 2019: ERA5-Land reanalysis. Copernicus Climate Change Service. Available online at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview. Accessed on 20 March 2021.
[11] Chai, T., and R. R. Draxler, 2014: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7, 1247–1250. doi: 10.5194/gmd-7-1247-2014
[12] Chen, M. Y., W. Shi, P. P. Xie, et al., 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos., 113, D04110. doi: 10.1029/2007JD009132,
[13] Costa, R. L., G. M. de Mello Baptista, H. B. Gomes, et al., 2020: Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Wea. Climate Extremes, 28, 100,254. doi: 10.1016/j.wace.2020.100254
[14] Degefu, M. A., and W. Bewket,, 2015: Trends and spatial patterns of drought incidence in the Omo-Ghibe River basin, Ethiopia. Geogr. Ann. Ser. A Phys. Geogr., 97, 395–414. doi: 10.1111/geoa.12080
[15] Dembélé, M., and S. J. Zwart, 2016: Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int. J. Remote Sens., 37, 3995–4014. doi: 10.1080/01431161.2016.1207258
[16] Dinku, T., P. Ceccato, E. Grover-Kopec, et al., 2007: Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28, 1503–1526. doi: 10.1080/01431160600954688
[17] Fang, J., W. T. Yang, Y. B. Luan, et al., 2019: Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res., 223, 24–38. doi: 10.1016/j.atmosres.2019.03.001
[18] Fentaw, F., D. Hailu, A. Nigussie, et al., 2018: Climate change impact on the hydrology of Tekeze Basin, Ethiopia: Projection of rainfall-runoff for future water resources planning. Water Conserv. Sci. Eng., 3, 267–278. doi: 10.1007/s41101-018-0057-3
[19] Funk, C., P. Peterson, M. Landsfeld, et al., 2015: The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data, 2, 150,066. doi: 10.1038/sdata.2015.66
[20] Funk, C., P. Peterson, S. Peterson, et al., 2019: A high-resolution 1983–2016 Tmax climate data record based on infrared temperatures and stations by the climate hazard center. J. Climate, 32, 5639–5658. doi: 10.1175/JCLI-D-18-0698.1
[21] Gebremicael, T. G., Y. A. Mohamed, P. van der Zaag, et al., 2019: Evaluation of multiple satellite rainfall products over the rugged topography of the Tekeze-Atbara basin in Ethiopia. Int. J. Remote Sens., 40, 4326–4345. doi: 10.1080/01431161.2018.1562585
[22] Gebremicael, T. G., Y. A. Mohamed, P. van der Zaag, et al., 2020: Change in low flows due to catchment management dynamics—Application of acomparative modelling approach. Hydrol. Process., 34, 2101–2116. doi: 10.1002/hyp.13715
[23] Gyasi-Agyei, Y., 2020: Identification of the optimum rain gauge network density for hydrological modelling based on radar rainfall analysis. Water, 12, 1906. doi: 10.3390/w12071906
[24] Haile, G. G., Q. H. Tang, G. Y. Leng, et al., 2020: Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa. Sci. Total Environ., 704, 135299. doi: 10.1016/j.scitotenv.2019.135299
[25] Harris, I., P. D. Jones, T. J. Osborn, et al., 2014: Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol., 34, 623–642. doi: 10.1002/joc.3711
[26] Harris, I., T. J. Osborn, P. Jones, et al., 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109. doi: 10.1038/s41597-020-0453-3
[27] Harrison, L., C. Funk, and P. Peterson, 2019: Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products. Environ. Res. Lett., 14, 085007. doi: 10.1088/1748-9326/ab2cae
[28] Hu, S., H. J. Qiu, D. D. Yang, et al., 2017: Evaluation of the applicability of climate forecast system reanalysis weather data for hydrologic simulation: A case study in the Bahe River Basin of the Qinling Mountains, China. J. Geogr. Sci., 27, 546–564. doi: 10.1007/s11442-017-1392-6
[29] Islam, A., and N. Cartwright, 2020: Evaluation of climate reanalysis and space-borne precipitation products over Bangladesh. Hydrol. Sci. J., 65, 1112–1128. doi: 10.1080/02626667.2020.1730845
[30] Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP–DOE AMIP-Ⅱ reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1644. doi: 10.1175/BAMS-83-11-1631
[31] Lakew, H. B., S. A. Moges, and D. H. Asfaw, 2017: Hydrological evaluation of satellite and reanalysis precipitation products in the Upper Blue Nile Basin: A case study of Gilgel Abbay. Hydrology, 4, 39. doi: 10.3390/hydrology4030039
[32] Lange, S., 2016: EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). GFZ Data Services. Available online at https://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:1809891. Accessed on 20 March 2021.
[33] Lange, S., 2018: Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset. Earth Syst. Dyn., 9, 627–645. doi: 10.5194/esd-9-627-2018
[34] Lange, S., 2019. EartH2Observe, WFDEI and ERA-Interim data Merged and Bias-corrected for ISIMIP (EWEMBI). V. 1.1. GFZ Data Services. Available online at http://doi.org/10.5880/pik.2019.004, doi: 10.5880/pik.2019.004. Accessed on 20 March 2021.
[35] Le Coz, C., and N. van de Giesen, 2020: Comparison of rainfall products over sub-Saharan Africa. J. Hydrometeor., 21, 553–596. doi: 10.1175/JHM-D-18-0256.1
[36] Lemma, E., S. Upadhyaya, and R. Ramsankaran, 2019: Investigating the performance of satellite and reanalysis rainfall products at monthly timescales across different rainfall regimes of Ethiopia. Int. J. Remote Sens., 40, 4019–4042. doi: 10.1080/01431161.2018.1558373
[37] Li, C. X., T. B. Zhao, C. X. Shi, et al., 2020: Evaluation of daily precipitation product in China from the CMA global atmospheric interim reanalysis. J. Meteor. Res., 34, 117–136. doi: 10.1007/s13351-020-8196-9
[38] Li, D., G. Christakos, X. X. Ding, et al., 2018: Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu Lake basin, China). J. Hydrol., 556, 1139–1152. doi: 10.1016/j.jhydrol.2017.01.006
[39] Liu, X. C., Z. X. Xu, and R. H. Yu, 2012: Spatiotemporal variability of drought and the potential climatological driving factors in the Liao River basin. Hydrol. Process., 26, 1–14. doi: 10.1002/hyp.8104
[40] Liu, X. C., Q. H. Tang, H. J. Cui, et al., 2017: Multimodel uncertainty changes in simulated river flows induced by human impact parameterizations. Environ. Res. Lett., 12, 025009. doi: 10.1088/1748-9326/aa5a3a
[41] Lockhoff, M., O. Zolina, C. Simmer, et al., 2019: Representation of precipitation characteristics and extremes in regional reanalyses and satellite- and gauge-based estimates over western and central Europe. J. Hydrometeor., 20, 1123–1145. doi: 10.1175/JHM-D-18-0200.1
[42] Mahmood, R., S. F. Jia, T. Mahmood, et al., 2020: Predicted and projected water resources changes in the Chari Catchment, the Lake Chad basin, Africa. J. Hydrometeor., 21, 73–91. doi: 10.1175/JHM-D-19-0105.1
[43] Maidment, R. I.,D. I. F. Grimes, R. P. Allan, et al., 2013: Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda. Meteorol. Appl., 20, 308–317. doi: 10.1002/met.1283
[44] Marques, C. A. F., A. Rocha, J. Corte-Real, et al., 2009: Global atmospheric energetics from NCEP-Reanalysis 2 and ECMWF-ERA40 Reanalysis. Int. J. Climatol., 29, 159–174. doi: 10.1002/joc.1704
[45] McKee, T. B., N. J. Doesken, and J. Kleist, 1995: Drought Monitoring with Multiple Time Scales. Proc. 9th Conference on Applied Climatology, American Meteorological Society, Dallas, TX, 233–236
[46] Ministry of Water Resources (MoWR), 1998: Tekeze river basin integrated development master plan project. Sectoral Report. Vol. VⅡ, Addis Ababa, Ethiopia. Available online at https://entrospace.nilebasin.org/handle/20.500.12351/383?show=full. Accessedon 20 March 2021.
[47] Muller, J. C.-Y., 2014: Adapting to climate change and addressing drought–learning from the Red Cross Red Crescent experiences in the Horn of Africa. Wea. Clim. Extremes, 3, 31–36. doi: 10.1016/j.wace.2014.03.009
[48] Nechita, C., K. Čufar, I. Macovei, et al., 2019: Testing three climate datasets for dendroclimatological studies of oaks in the South Carpathians. Sci. Total Environ., 694, 133,730. doi: 10.1016/j.scitotenv.2019.133730
[49] Nicholson, S. E., 2017: Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys., 55, 590–635. doi: 10.1002/2016RG000544
[50] Peng, J., S. Dadson, F. Hirpa, et al., 2020: A pan-African high-resolution drought index dataset. Earth Syst. Sci. Data, 12, 753–769. doi: 10.5194/essd-12-753-2020
[51] Roy, A., P. K. Thakur, N. Pokhriyal, et al., 2018: Intercomparison of different rainfall products and validation of WRF modelled rainfall estimation in N-W Himalya during monsoon period . ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-5, 351–358. doi: 10.5194/isprs-annals-IV-5-351-2018
[52] Saccenti, E., M. H. W. B. Hendriks, and A. K. Smilde, 2020: Corruption of the Pearson correlation coefficient by measurement error and its estimation, bias, and correction under different error models. Sci. Rep., 10, 438. doi: 10.1038/s41598-019-57247-4
[53] Sahlu, D., S. A. Moges,, E. I. Nikolopoulos, et al., 2017: Evaluation of high-resolution multisatellite and reanalysis rainfall products over East Africa. Adv. Meteor., 2017, 4957960. doi: 10.1155/2017/4957960
[54] Satgé, F., D. Defrance, B. Sultan, et al., 2020: Evaluation of 23 gridded precipitation datasets across West Africa. J. Hydrol., 581, 124412. doi: 10.1016/j.jhydrol.2019.124412
[55] Schamm, K., M. Ziese, A. Becker, et al., 2014: Global gridded precipitation over land: a description of the new GPCC First Guess Daily product. Earth Syst. Sci. Data, 6, 49–60. doi: 10.5194/essd-6-49-2014
[56] Tan, M. L., P. W. Gassman, and A. P. Cracknell, 2017: Assessment of three long-term gridded climate products for hydro-climatic simulations in tropical river basins. Water, 9, 229. doi: 10.3390/w9030229
[57] Tan, X. H., B. Yong, and L. L. Ren, 2018: Error features of the hourly GSMaP multi-satellite precipitation estimates over nine major basins of China. Hydrol. Res., 49, 761–779. doi: 10.2166/nh.2017.263
[58] Tefera, A. S., J. O. Ayoade, and N. J. Bello, 2019: Comparative analyses of SPI and SPEI as drought assessment tools in Tigray Region, Northern Ethiopia. SN Appl. Sci., 1, 1265. doi: 10.1007/s42452-019-1326-2
[59] Toté, C., D. Patricio, H. Boogaard, et al., 2015: Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens., 7, 1758–1776. doi: 10.3390/rs70201758
[60] Wang, N., W. B. Liu, F. B. Sun, et al., 2020: Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River basin, China. Atmos. Res., 234, 104,746. doi: 10.1016/j.atmosres.2019.104746
[61] Weedon, G. P., G. Balsamo, N. Bellouin, et al., 2014: The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50, 7505–7514. doi: 10.1002/2014WR015638
[62] Weedon, G. P., G. Balsamo, N. Bellouin, et al., 2018: The WFDEI meteorological forcing data. Research data archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Available online at doi: 10.5065/486N-8109. Accessed on 20 March 2021.
[63] Worqlul, A. W., B. Maathuis, A. A. Adem, et al., 2014: Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrol. Earth Syst. Sci., 18, 4871–4881. doi: 10.5194/hess-18-4871-2014
[64] Zeng, Q., H. Chen, C. Y. Xu, et al., 2018: The effect of rain gauge density and distribution on runoff simulation using a lumped hydrological modelling approach. J. Hydrol., 563, 106–122. doi: 10.1016/j.jhydrol.2018.05.058
[65] Zhang, Y. S., and N. Ma, 2018: Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia. J. Hydrol., 559, 238–251. doi: 10.1016/j.jhydrol.2018.02.031
[66] Zhao, H. G., S. T. Yang, Z. W. Wang, et al., 2015: Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China. J. Geogr. Sci., 25, 177–195. doi: 10.1007/s11442-015-1161-3
[67] Zhao, T. B., and C. B. Fu, 2006: Comparison of products from ERA-40, NCEP-2, and CRU with station data for summer precipitation over China. Adv. Atmos. Sci., 23, 593–604. doi: 10.1007/s00376-006-0593-1
[68] Zhao, T. B., W. D. Guo, and C. B. Fu, 2008: Calibrating and evaluating reanalysis surface temperature error by topographic correction. J. Climate, 21, 1440–1446. doi: 10.1175/2007JCLI1463.1
[69] Ziese, M., A. Rauthe-Schöch, A. Becker, et al., 2018: GPCC Full Data Daily Version.2018 at 1.0°: Daily Land-Surface Precipitation from Rain-Gauges builton GTS-based and Historic Data. Available online at https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-daily_v2018_doi_download.html, doi: 10.5676/DWD_GPCC/FD_D_V2018_100. Accessed on 20 March 2021.