[1] Adams, A. M., J. M. Prospero, and C. D. Zhang, 2012: CALIPSO-derived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents. J. Climate, 25, 6862–6879. doi: 10.1175/jcli-d-11-00672.1
[2] Chen, Q., Y. Yin, L. J. Jin, et al., 2011: The effect of aerosol layers on convective cloud microphysics and precipitation. Atmos. Res., 101, 327–340. doi: 10.1016/j.atmosres.2011.03.007
[3] Chen, S. Y., J. P. Huang, C. Zhao, et al., 2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res. Atmos., 118, 797–812. doi: 10.1002/jgrd.50122
[4] Chen, S. Y., J. P. Huang, J. X. Li, et al., 2017: Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci., 60, 1338–1355. doi: 10.1007/s11430-016-9051-0
[5] Fan, J. W., D. Rosenfeld, Y. Yang, et al., 2015: Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China. Geophys. Res. Lett., 42, 6066–6075. doi: 10.1002/2015gl064479
[6] Henderson, D. S., T. L’Ecuyer, G. Stephens, et al., 2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853–871. doi: 10.1175/jamc-d-12-025.1
[7] Huang, J., Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011–4021. doi: 10.5194/acp-9-4011-2009
[8] Huang, J., P. Minnis, H. Yan, et al., 2010: Dust aerosol effect on semi-arid climate over Northwest China detected from A-train satellite measurements. Atmos. Chem. Phys., 10, 6863–6872. doi: 10.5194/acp-10-6863-2010
[9] Huang, J. P., T. H. Wang, W. C. Wang, et al., 2014: Climate effects of dust aerosols over east Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11,398–11,416. doi: 10.1002/2014JD021796
[10] Huang, J. P., J. R. Ma, X. D. Guan, et al., 2019: Progress in semi-arid climate change studies in China. Adv. Atmos. Sci., 36, 922–937. doi: 10.1007/s00376-018-8200-9
[11] Jia, R., J. Li, Q. Z. Zhu, et al., 2021: Three-dimensional distribution and formation causes of aerosols over Northwest China. J. Desert Res., 41, 34–43. (in Chinese)
[12] Jiang, D. B., M. F. Su, R. Q. Wei, et al., 2009: Variation and projection of drought and wet conditions in Xinjiang. Chinese J. Atmos. Sci., 33, 90–98. (in Chinese) doi: 10.3878/j.issn.1006-9895.2009.01.08
[13] Jiang, J. H., H. Su, L. Huang, et al., 2018: Contrasting effects on deep convective clouds by different types of aerosols. Nat. Commun., 9, 3874. doi: 10.1038/s41467-018-06280-4
[14] Kahn, R. A., D. L. Nelson, M. J. Garay, et al., 2009: MISR aerosol product attributes and statistical comparisons with MODIS. IEEE Trans. Geosci. Remote Sens., 47, 4095–4114. doi: 10.1109/tgrs.2009.2023115
[15] Kang, S. C., Y. W. Xu, Q. L. You, et al., 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5, 015101. doi: 10.1088/1748-9326/5/1/015101
[16] Kawecki, S., G. M. Henebry, A. L. Steiner, 2016: Effects of urban plume aerosols on a mesoscale convective system. J. Atmos. Sci., 73, 4641–4660. doi: 10.1175/jas-d-16-0084.1
[17] Lau, K. M., M. K. Kim, and K. M. Kim., 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855–864. doi: 10.1007/s00382-006-0114-z
[18] Lau, W. K. M., M. K. Kim, K. M. Kim, et al., 2010: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5, 025204. doi: 10.1088/1748-9326/5/2/025204
[19] Lee, W. L., K. N. Liou, C. He, et al., 2017: Impact of absorbing aerosol deposition on snow albedo reduction over the southern Tibetan Plateau based on satellite observations. Theor. Appl. Climatol., 129, 1373–1382. doi: 10.1007/s00704-016-1860-4
[20] Lee, W. S., R. L. Bhawar, M. K. Kim, et al., 2013: Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring. Atmos. Environ., 75, 113–122. doi: 10.1016/j.atmosenv.2013.04.004
[21] Ma, Y. N., J. Y. Xin, W. Y. Zhang, et al., 2021: Uncertainties of simulated aerosol direct radiative effect induced by aerosol chemical components: A measurement-based perspective from urban-forest transition region in East China. J. Geophys. Res. Atmos., 126, e2020JD033688. doi: 10.1029/2020jd033688
[22] Ma, Z. G., C. B. Fu, Q. Yang, et al., 2018: Drying trend in Northern China and its shift during 1951–2016. Chinese J. Atmos. Sci., 42, 951–961. (in Chinese) doi: 10.3878/j.issn.1006-9895.1802.18110
[23] Paukert, M., C. Hoose, and M. Simmel, 2017: Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds. J. Adv. Model. Earth Syst., 9, 514–535. doi: 10.1002/2016ms000841
[24] Samset, B. H., and G. Myhre, 2011: Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing. Geophys. Res. Lett., 38, L24802. doi: 10.1029/2011gl049697
[25] Samset, B. H., G. Myhre, M. Schulz, et al., 2013: Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos. Chem. Phys., 13, 2423–2434. doi: 10.5194/acp-13-2423-2013
[26] Shen, J., Y. H. Li, and X. W. Zhu, 2010: Influence of climate and enviroment change on dust storm in Northwest China. J. Arid Meteor., 28, 467–474. (in Chinese) doi: 10.3969/j.issn.1006-7639.2010.04.016
[27] Shi, T. L., J. C. Cui, Y. Chen, et al., 2021: Enhanced light absorption and reduced snow albedo due to internally mixed mineral dust in grains of snow. Atmos. Chem. Phys., 21, 6035–6051. doi: 10.5194/acp-21-6035-2021
[28] Soldatenko, S., 2020: Estimating the effect of radiative feedback uncertainties on climate response to changes in the concentration of stratospheric aerosols. Atmosphere, 11, 654. doi: 10.3390/atmos11060654
[29] Wang, X. M., D. W. Cai, S. Y. Chen, et al., 2021: Spatio-temporal trends of dust emissions triggered by desertification in China. CATENA, 200, 105160. doi: 10.1016/j.catena.2021.105160
[30] Wang, Y. C., and C. Y. Zhao, 2001: Study in desert–oasis ecological fragile zone. Arid Land Geogr., 24, 182–188. (in Chinese) doi: 10.3321/j.issn:1000-6060.2001.02.017
[31] Wei, K., and L. Wang, 2013: Reexamination of the aridity conditions in arid Northwestern China for the last decade. J. Climate, 26, 9594–9602. doi: 10.1175/jcli-d-12-00605.1
[32] Wu, D. Y., J. Liu, T. S. Wang, et al., 2021: Applying a dust index over North China and evaluating the contribution of potential factors to its distribution. Atmos. Res., 254, 105515. doi: 10.1016/j.atmosres.2021.105515
[33] Yang, J. H., K. Q. Duan, S. C. Kang, et al., 2017: Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain. Climate Dyn., 48, 2901–2917. doi: 10.1007/s00382-016-3240-2
[34] Young, S. A., M. A. Vaughan, A. Garnier, et al., 2018: Extinction and optical depth retrievals for CALIPSO’s version 4 data release. Atmos. Meas. Tech., 11, 5701–5727. doi: 10.5194/amt-11-5701-2018
[35] Yuan, T. G., J. P. Huang, J. H. Cao, et al., 2021: Indian dust-rain storm: Possible influences of dust ice nuclei on deep convective clouds. Sci. Total Environ., 779, 146439. doi: 10.1016/j.scitotenv.2021.146439
[36] Zarzycki, C. M., and T. C. Bond, 2010: How much can the vertical distribution of black carbon affect its global direct radiative forcing? Geophys. Res. Lett., 37, L20807. doi: 10.1029/2010gl044555
[37] Zhang, C., S. L. Li, F. F. Luo, et al., 2019: The global warming hiatus has faded away: An analysis of 2014–2016 global surface air temperatures. Int. J. Climatol., 39, 4853–4868. doi: 10.1002/joc.6114
[38] Zhang, Q., Z. Y. Deng, Y. D. Zhao, et al., 2008: The impacts of global climatic change on the agriculture in Northwest China. Acta Ecol. Sinica, 28, 1210–1218. (in Chinese) doi: 10.3321/j.issn:1000-0933.2008.03.037
[39] Zhang, Q., C. J. Zhang, H. Z. Bai, et al., 2010: New development of climate change in Northwest China and its impact on arid environment. J. Arid Meteor., 28, 1–7. (in Chinese) doi: 10.3969/j.issn.1006-7639.2010.01.001
[40] Zhao, D. S., and S. H. Wu, 2013: Responses of vulnerability for natural ecosystem to climate change in China. Acta Geogr. Sinica, 68, 602–610. (in Chinese) doi: 10.11821/xb201305003