[1] Abulikemu, A., X. Xu, Y. Wang, et al., 2015: Atypical occlusion process caused by the merger of a sea-breeze front and gust front. Adv. Atmos. Sci., 32, 1431–1443. doi: 10.1007/s00376-015-4260-2
[2] Abulikemu, A., X. Xu, Y. Wang, et al., 2016: A modeling study of convection initiation prior to the merger of a sea-breeze front and a gust front. Atmos. Res., 182, 10–19. doi: 10.1016/j.atmosres.2016.07.003
[3] Bedard, Jr. A. J., W. H. Hooke, and D. W. Beran, 1977: The Dulles airport pressure jump detector array for gust front detection. Bull. Amer. Meteor. Soc., 58, 920–926. doi: 1520-0477(1977)058<0920:TDAPJD>2.0.CO;2
[4] Cao, C. Y., Y. Z. Chen, D. H. Liu, et al., 2015: The optical flow method and its application to nowcasting. Acta Meteor. Sinica, 73, 471–480. (in Chinese) doi: 10.11676/qxxb2015.034
[5] Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140–156. doi: 10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2
[6] Chen, Y. Z., H. P. Lan, X. L. Chen, et al., 2017: A nowcasting technique based on application of the particle filter blending algorithm. J. Meteor. Res., 31, 931–945. doi: 10.1007/s13351-017-6557-9
[7] Delanoy, R. L., and S. W. Troxel, 1993: Machine intelligent gust front detection. [Available online at http://citeseerx.ist.psu. edu/viewdoc/summary?doi=
[8] Farnebäck, G., 2003: Two-frame motion estimation based on polynomial expansion. Proceedings of the 13th Scandinavian Conference, SCIA 2003, Springer, Halmstad, Sweden, 363–370, doi: 10.1007/3-540-45103-X_50.
[9] Lam, L., S. W. Lee, and C. Y. Suen, 1992: Thinning methodologies—A comprehensive survey. IEEE Trans. Patt. Analy. Mach. Intell., 14, 869–885. doi: 10.1109/34.161346
[10] Li, G. C., W. H. Guo, L. R. Wang, et al., 2006: Application of gust front to damage wind forecasting. Meteor. Mon., 32, 36–41. (in Chinese) doi: 10.3969/j.issn.1000-0526.2006.08.006
[11] Liu, L., Y. L. Long, P. W. Fieguth, et al., 2014: BRINT: Binary rotation invariant and noise tolerant texture classification. IEEE Trans. Image Process., 23, 3071–3084. doi: 10.1109/TIP.2014.2325777
[12] Ojala, T., M. Pietikäinen, and D. Harwood, 1996: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit., 29, 51–59. doi: 10.1016/0031-3203(95)00067-4
[13] Qi, L. B., C. H. Chen, and Q. J. Liu, 2006: Application of narrow-band echo in severe weather prediction and analysis. Acta Meteor. Sinica, 64, 112–120. (in Chinese) doi: 10.3321/j.issn:0577-6619.2006.01.011
[14] Quan, W. Q., X. Xu, and Y. Wang, 2014: Observation of a straight-line wind case caused by a gust front and its associated fine-scale structures. J. Meteor. Res., 28, 1137–1154. doi: 10.1007/s13351-014-3080-0
[15] Spitzner, M., and R. Gonzalez, 2015: Shape peeling for improved image skeleton stability. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Brisbane, QLD, Australia, 1508–1512, doi: 10.1109/ICASSP.2015.7178222.
[16] Smalley, D. J., B. J. Bennett, and R. Frankel, 2005: 8.4 MIGFA: the machine intelligent gust front algorithm for NEXRAD. [Available online at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=].
[17] Tao, L., Z. H. Yuan, J. H. Dai, et al., 2014: Analysis of the characteristics of a nocturnal bow echo. Acta Meteor. Sinica, 72, 220–236. (in Chinese) doi: 10.11676/qxxb2014.027
[18] Troxel, S. W., and R. L. Delanoy, 1994: Machine intelligent approach to automated gust-front detection for Doppler weather radars. Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, SPIE, Orlando, FL, United States, 182–193, doi: 10.1117/12.179602.
[19] Uyeda, H., and D. S. Zrnić, 1986: Automatic detection of gust fronts. J. Atmos. Oceanic Technol., 3, 36–50. doi: 10.1175/1520-0426(1986)003<0036:ADOGF>2.0.CO;2
[20] Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082. doi: 10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2
[21] Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536. doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2
[22] Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 8, 113–131. doi: 10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2
[23] Wilson, J. W., E. E. Ebert, T. R. Saxen, et al., 2004: Sydney 2000 forecast demonstration project: Convective storm nowcasting. Wea. Forecasting, 19, 131–150. doi: 10.1175/1520-0434(2004)019<0131:SFDPCS>2.0.CO;2
[24] Wold, S., K. Esbensen, and P. Geladi, 1987: Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52. doi: 10.1016/0169-7439(87)80084-9
[25] Xi, B. Z., X. D. Yu, L. Sun, et al., 2015: Generating mechanism and type of gust front and its subjective identification methods. Meteor. Mon., 41, 133–142. (in Chinese) doi: 10.7519/j.issn.1000-0526.2015.02.001
[26] Xu, F., J. Yang, W. M. Xia, et al., 2015: Statistical characteristics and automatic detection of the gust front in radar reflectivity data. Plateau Meteor., 34, 586–595. (in Chinese) doi: 10.7522/j.issn.1000-0534.2014.00005
[27] Xu, F., J. Yang, H. H. Zheng, et al., 2016: Improvement of the MIGFA technique for identifying gust front and its verification. Meteor. Mon., 42, 44–53. (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.01.005
[28] Yu, X. D., X. G. Zhou, and X. M. Wang, 2012: The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteor. Sinica, 70, 311–337. (in Chinese) doi: 10.11676/qxxb2012.030
[29] Zheng, J. F., J. Zhang, K. Y. Zhu, et al., 2013: Automatic identification and alert of gust fronts. J. Appl. Meteor. Sci., 24, 117–125. (in Chinese) doi: 10.3969/j.issn.1001-7313.2013.01.012
[30] Zheng, J. F., J. Zhang, K. Y. Zhu, et al., 2014: Gust front statistical characteristics and automatic identification algorithm for CINRAD. J. Meteor. Res., 28, 607–623. doi: 10.1007/s13351-014-3240-2