[1] Abarca, S. F., and M. T. Montgomery, 2013: Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 3216–3230. doi: 10.1175/JAS-D-12-0318.1
[2] Abarca, S. F., and M. T. Montgomery, 2014: Departures from axisymmetric balance dynamics during secondary eyewall formation. J. Atmos. Sci., 71, 3723–3738. doi: 10.1175/JAS-D-14-0018.1
[3] Abarca, S. F., M. T. Montgomery, and J. C. McWilliams, 2015: The azimuthally averaged boundary layer structure of a numerically simulated major hurricane. J. Adv. Model. Earth Syst., 7, 1207–1219. doi: 10.1002/2015MS000457
[4] Ahern, K., R. E. Hart, and M. A. Bourassa, 2022: Asymmetric hurricane boundary layer structure during storm decay. Part II: Secondary eyewall formation. Mon. Wea. Rev., 150, 1915–1936. doi: 10.1175/MWR-D-21-0247.1
[5] Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947–957. doi: 10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2
[6] Black, P. G., H. V. Senn, and C. L. Courtright, 1972: Airborne radar observations of eye configuration changes, bright band distribution, and precipitation tilt during the 1969 multiple seeding experiments in hurricane Debbie. Mon. Wea. Rev., 100, 208–217. doi: 10.1175/1520-0493(1972)100<0208:AROOEC>2.3.CO;2
[7] Chen, G. H., 2018: Secondary eyewall formation and concentric eyewall replacement in association with increased low-level inner-core diabatic cooling. J. Atmos. Sci., 75, 2659–2685. doi: 10.1175/JAS-D-17-0207.1
[8] Chen, G. H., C.-C. Wu, and Y.-H. Huang, 2018: The role of near-core convective and stratiform heating/cooling in tropical cyclone structure and intensity. J. Atmos. Sci., 75, 297–326. doi: 10.1175/JAS-D-17-0122.1
[9] Dai, Y., S. J. Majumdar, and D. S. Nolan, 2017: Secondary eyewall formation in tropical cyclones by outflow–jet interaction. J. Atmos. Sci., 74, 1941–1958. doi: 10.1175/JAS-D-16-0322.1
[10] Didlake, A. C. Jr., and R. A. Jr. Houze, 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 1891–1911. doi: 10.1175/JAS-D-12-0245.1
[11] Didlake, A. C. Jr., P. D. Reasor, R. F. Rogers, et al., 2018: Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). J. Atmos. Sci., 75, 2909–2929. doi: 10.1175/JAS-D-17-0348.1
[12] Elsberry, R. L., L. S. Chen, J. Davidson, et al., 2013: Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones. Trop. Cyclone Res. Rev., 2, 13–24. doi: 10.6057/2013TCRR01.02
[13] Fang, J., and F. Q. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 3327–3346. doi: 10.1175/MWR-D-10-05021.1
[14] Fortner, C. L. E. Jr., 1958: Typhoon Sarah, 1956. Bull. Amer. Meteor. Soc., 39, 633–639. doi: 10.1175/1520-0477-39.12.633
[15] Gentry, R. C., 1970: Hurricane Debbie modification experiments, August 1969. Science, 168, 473–475. doi: 10.1126/science.168.3930.473
[16] Hawkins, H. F., 1971: Comparison of results of the Hurricane Debbie (1969) modification experiments with those from Rosenthal’s numerical model simulation experiments. Mon. Wea. Rev., 99, 427–434. doi: 10.1175/1520-0493(1971)099<0427:COROTH>2.3.CO;2
[17] Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Proceedings of the 26th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., Miami Beach, FL, P1.7.
[18] Hawkins J. D., and M. Helveston, 2008: Tropical Cyclone Multiple Eyewall Characteristics. Preprints of the 28th Conference on Hurricanes and Tropical Meteorology. Orlando, FL, Amer. Meteor. Soc., 14B.1.
[19] Hawkins, J. D., M. Helveston, T. F. Lee, et al., 2006: Tropical Cyclone Multiple Eyewall Configurations. Proceedings of the 27th Conference on Hurricanes and Tropical Meteorology, Amer. Meteor. Soc., Miami, FL, 6B.1.
[20] Hence, D. A., and R. A. Jr. Houze, 2012: Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM Precipitation Radar. J. Atmos. Sci., 69, 1021–1036. doi: 10.1175/JAS-D-11-0119.1
[21] Holliday, C. R., 1977: Double intensification of Typhoon Gloria, 1974. Mon. Wea. Rev., 105, 523–528. doi: 10.1175/1520-0493(1977)105<0523:DIOTG>2.0.CO;2
[22] Hoose, H. M., and J. A. Colón, 1970: Some aspects of the radar structure of Hurricane Beulah on September 9, 1967. Mon. Wea. Rev., 98, 529–533. doi: 10.1175/1520-0493(1970)098<0529:SAOTRS>2.3.CO;2
[23] Houze, R. A. Jr., S. S. Chen, W.-C. Lee, et al., 2006: The hurricane rainband and intensity change experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Amer. Meteor. Soc., 87, 1503–1522. doi: 10.1175/BAMS-87-11-1503
[24] Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662–674. doi: 10.1175/JAS-D-11-0114.1
[25] Jordan, C. L., 1966: Surface pressure variations at coastal stations during the period of irregular motion of Hurricane Carla of 1961. Mon. Wea. Rev., 94, 454–458. doi: 10.1175/1520-0493(1966)094<0454:SPVACS>2.3.CO;2
[26] Jordan, C. L., and F. J. Schatzle, 1961: Weather note: The “double eye” of Hurricane Donna. Mon. Wea. Rev., 89, 354–356. doi: 10.1175/1520-0493(1961)089<0354:WNTDEO>2.0.CO;2
[27] Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 2808–2830. doi: 10.1175/JAS-D-13-046.1
[28] Kepert, J. D., and D. S. Nolan, 2014: Reply to “comments on ‘how does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?’” J. Atmos. Sci., 71, 4692–4704, doi: 10.1175/JAS-D-14-0014.1.
[29] Komaromi, W. A., and J. D. Doyle, 2018: On the dynamics of tropical cyclone and trough interactions. J. Atmos. Sci., 75, 2687–2709. doi: 10.1175/JAS-D-17-0272.1
[30] Kuo, H.-C., L.-Y. Lin, C.-P. Chang, et al., 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 2722–2734. doi: 10.1175/JAS3286.1
[31] Kuo, H.-C., W. H., Schubert, C.-L. Tsai, et al., 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 5183–5198. doi: 10.1175/2008MWR2378.1
[32] Leroux, M.-D., M. Plu, D. Barbary, et al., 2013: Dynamical and physical processes leading to tropical cyclone intensification under upper-level trough forcing. J. Atmos. Sci., 70, 2547–2565. doi: 10.1175/JAS-D-12-0293.1
[33] Leroux. M.-D., M. Plu, and F. Roux, 2016: On the sensitivity of tropical cyclone intensification under upper-level trough forcing. Mon. Wea. Rev., 144, 1179–1202. doi: 10.1175/mwr-d-15-0224.1
[34] Li, Q. Q., Y. Q. Wang, and Y. H. Duan, 2014: Effects of diabatic heating and cooling in the rapid filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 3144–3163. doi: 10.1175/JAS-D-13-0312.1
[35] McNoldy, B. D., 2004: Triple eyewall in Hurricane Juliette. Bull. Amer. Meteor. Soc., 85, 1663–1666. doi: 10.1175/BAMS-85-11-1663
[36] Molinari, J., and D. Vollaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 1093–1105. doi: 10.1175/1520-0469(1989)046<1093:EIOHIP>2.0.CO;2
[37] Molinari, J., J. A. Zhang, R. F. Rogers, et al., 2019: Repeated eyewall replacement cycles in hurricane frances (2004). Mon. Wea. Rev., 147, 2009–2022. doi: 10.1175/MWR-D-18-0345.1
[38] Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465. doi: 10.1002/qj.49712353810
[39] Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 37–66. doi: 10.22499/2.6401.005
[40] Qiu, X., and Z.-M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953–974. doi: 10.1175/JAS-D-12-084.1
[41] Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394. doi: 10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2
[42] Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 3829–3847. doi: 10.1175/MWR-D-11-00034.1
[43] Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res. Atmos., 113, D12112. doi: 10.1029/2007JD008897
[44] Tyner, B., P. Zhu, J. A. Zhang, et al., 2018: A top-down pathway to secondary eyewall formation in simulated tropical cyclones. J. Geophys. Res. Atmos., 123, 174–197. doi: 10.1002/2017JD027410
[45] Wang, H., and Y. Q. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29–48. doi: 10.1175/MWR-D-13-00070.1
[46] Wang, H., C.-C. Wu, and Y. Q. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 3911–3930. doi: 10.1175/JAS-D-15-0146.1
[47] Wang, H., Y. Q. Wang, J. Xu, et al., 2019: The axisymmetric and asymmetric aspects of the secondary eyewall formation in a numerically simulated tropical cyclone under idealized conditions on an f plane. J. Atmos. Sci., 76, 357–378. doi: 10.1175/JAS-D-18-0130.1
[48] Wang, Q., D. J. Zhao, Y. H. Duan, et al., 2023: Super Typhoon Hinnamnor (2022) with a record-breaking lifespan over the western North Pacific. Adv. Atmos. Sci., 40, 1558–1566. doi: 10.1007/s00376-023-2336-y
[49] Wang, X. B., Y. M. Ma, and N. E. Davidson, 2013: Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: Effect of the net radial force in the hurricane boundary layer. J. Atmos. Sci., 70, 1317–1341. doi: 10.1175/JAS-D-12-017.1
[50] Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257–278. doi: 10.1007/s00703-003-0055-6
[51] Wang, Y.-F., and Z.-M. Tan, 2020: Outer rainbands-driven secondary eyewall formation of tropical cyclones. J. Atmos. Sci., 77, 2217–2236. doi: 10.1175/JAS-D-19-0304.1
[52] Wang, Y.-F., and Z.-M. Tan, 2022: Essential dynamics of the vertical wind shear affecting the secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 79, 2831–2847. doi: 10.1175/JAS-D-21-0340.1
[53] Wang, Y. Q., and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during its rapid intensification phase. Trop. Cyclone Res. Rev., 2, 65–80. doi: 10.6057/2013TCRR02.01
[54] Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242–264. doi: 10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2
[55] Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411. doi: 10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2
[56] Yang, Y.-T., H.-C. Kuo, E. A. Hendricks, et al., 2013: Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon. Wea. Rev., 141, 2632–2648. doi: 10.1175/MWR-D-12-00251.1
[57] Yu, C.-L., A. C. Jr. Didlake, F. Q. Zhang, et al., 2021: Asymmetric rainband processes leading to secondary eyewall formation in a model simulation of Hurricane Matthew (2016). J. Atmos. Sci., 78, 29–49. doi: 10.1175/JAS-D-20-0061.1
[58] Zhang, F. Q., D. D. Tao, Y. Q. Sun, et al., 2017: Dynamics and predictability of secondary eyewall formation in sheared tropical cyclones. J. Adv. Model. Earth Syst., 9, 89–112. doi: 10.1002/2016MS000729
[59] Zhao, D. J., Y. B. Yu, and L. S. Chen, 2021: Impact of the monsoonal surge on extreme rainfall of landfalling tropical cyclones. Adv. Atmos. Sci., 38, 771–784. doi: 10.1007/s00376-021-0281-1
[60] Zhao, D. J., W. H. Gao, H. X. Xu, et al., 2022: A modeling study of cloud physical properties of extreme and non-extreme precipitation in landfalling typhoons over China. Atmos. Res., 277, 106311. doi: 10.1016/j.atmosres.2022.106311
[61] Zhu, P., Z. D. Zhu, S. Gopalakrishnan, et al., 2015: Impact of subgrid-scale processes on eyewall replacement cycle of tropical cyclones in HWRF system. Geophys. Res. Lett., 42, 10,027–10,036. doi: 10.1002/2015GL066436
[62] Zhu, X.-S., H. Yu, and Y. Q. Wang, 2022: Downwind development in a stationary band complex leading to the secondary eyewall formation in the simulated Typhoon Soudelor (2015). Mon. Wea. Rev., 150, 2459–2483. doi: 10.1175/MWR-D-21-0318.1