[1] Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701. doi: 10.1175/1520-0469%281974%29031<0674%3AIOACCE>2.0.CO%3B2
[2] Bi, K., X. C. Ma, Y. B. Chen, et al., 2018: The observation of ice-nucleating particles active at temperatures above −15°C and its implication on ice formation in clouds. J. Meteor. Res., 32, 734–743. doi: 10.1007/s13351-018-7181-z
[3] Blackadar, A. K., 1978: Modeling pollutant transfer during daytime convection. Preprints from Fourth Symposium on Turbulence, Diffusion, and Air Quality, Amer. Meteor. Soc., Reno, NV, 443–447.
[4] Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445. (in Chinese) doi: 10.1007/s11434-008-0494-z
[5] Cotton, W. R., G. J. Tripoli, R. M. Rauber, et al., 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680. doi: 10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2
[6] Cripe, D., 1998: Single-column modeling: Sensitivity to initial conditions and divergence forcing. Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting, ARM, San Antonio, TX, 439–441. [Available on line at http://scholar.google.com/scholar?hl=en&q=Cripe%2C+D.%2C+1998%3A++Single-column+modeling%3A+Sensitivity+to+initial+conditions+and+divergence+forcing.+Proc.+Seventh+Atmospheric+Radiation+Measurement+%28ARM%29+Science+Team+Meeting%2C+San+Antonio%2C+TX%2C+ARM+Program%2C+439%E2%80%93441].
[7] Davies, L., 2009: TWP-ICE single column model case. [Available on line at http://users.monash.edu.au/~ladavies/SCM_TWP-ICEdoc.pdf].
[8] DeMott, P. J., K. Sassen, M. R. Poellot, et al., 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732. doi: 10.1029/2003GL017410
[9] Deng, X., H. W. Xue, and Z. Y. Meng, 2018: The effect of ice nuclei on a deep convective cloud in South China. Atmos. Res., 206, 1–12. doi: 10.1016/j.atmosres.2018.02.013
[10] Diehl, K., and S. K. Mitra, 2015: New particle-dependent parameterizations of heterogeneous freezing processes: Sensitivity studies of convective clouds with an air parcel model. Atmos. Chem. Phys., 15, 12741–12763. doi: 10.5194/acp-15-12741-2015
[11] Du, C. H., T. van der Sar, T. X. Zhou, et al., 2017: Control and local measurement of the spin chemical potential in a magnetic insulator. Science, 357, 195–198. doi: 10.1126/science.aak9611
[12] Ekman, A. M. L., A. Engström, and C. Wang, 2007: The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud. Quart. J. Roy. Meteor. Soc., 133, 1439–1452. doi: 10.1002/qj.108
[13] Fan, J. W., T. L. Yuan, J. M. Comstock, et al., 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. Atmos., 114, D22206. doi: 10.1029/2009JD012352
[14] Fridlind, A., A. Ackerman, J. Petch, et al., 2010: ARM/GCSS/SPARC TWP-ICE CRM intercomparison study. NASA-TM-2010-215858, National Aeronautics and Space Administration, Greenbelt. [Available online at https://pubs.giss.nasa.gov/docs/2010/2010_Fridlind_fr08100v.pdf].
[15] Garrett, T. J., and C. F. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787–789. doi: 10.1038/nature04636
[16] Gesso, S. D., and R. A. J. Neggers, 2018: Can we use single-column models for understanding the boundary layer cloud-climate feedback? J. Adv. Model. Earth Syst., 10, 245–261. doi: 10.1002/2017MS001113
[17] Hack, J. J., and J. A. Pedretti, 2000: Assessment of solution uncertainties in single-column modeling frameworks. J. Climate, 13, 352–365. doi: 10.1175/1520-0442(2000)013<0352:AOSUIS>2.0.CO;2
[18] Harrison, E. F., P. Minnis, B. R. Barkstrom, et al., 1990: Time dependence of the Earth’s radiation fields determined from ERBS and NOAA-9 satellites. Proceedings of SPIE Volume 1299, Long-Term Monitoring of the Earth’s Radiation Budget, SPIE, Orlando, FL, 222–230, doi: 10.1117/12.21380.
[19] Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 1281–1304. doi: 10.1175/1520-0442(1992)005<1157:TEOCTO>2.0.CO;2
[20] Hazra, A., B. Padmakumari, R. S. Maheskumar, et al., 2016: The effect of mineral dust and soot aerosols on ice microphysics near the foothills of the Himalayas: A numerical investigation. Atmos. Res., 171, 41–55. doi: 10.1016/j.atmosres.2015.12.005
[21] Hiron, T., and A. I. Flossmann, 2015: A study of the role of the parameterization of heterogeneous ice nucleation for the modeling of microphysics and precipitation of a convective cloud. J. Atmos. Sci., 72, 3322–3339. doi: 10.1175/JAS-D-15-0026.1
[22] Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys., 12, 9817–9854. doi: 10.5194/acp-12-9817-2012
[23] Hu, Z. J., and C. F. Yan, 1986: Numerical simulation of microphysical processes in stratiform clouds (I)—Microphysical model. J. Acad. Meteor. Sci., 1, 37–52. (in Chinese)
[24] Hu, Z. J., and G. F. He, 1987: Numerical simulation of microprocesses in cumulonimbus clouds. (I): Microphysical model. Acta Meteor. Sinica, 45, 467–484. (in Chinese) doi: 10.11676/qxxb1987.060
[25] Jensen, E. J., O. B. Toon, L. Pfister, et al., 1996: Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause. Geophys. Res. Lett., 23, 825–828. doi: 10.1029/96GL00722
[26] Kennedy, A. D., X. Q. Dong, B. K. Xi, et al., 2010: Evaluation of the NASA GISS single-column model simulated clouds using combined surface and satellite observations. J. Climate, 23, 5175–5192. doi: 10.1175/2010JCLI3353.1
[27] Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, Cambridge, 584 pp.
[28] Li, Z., H. W. Xue, and F. Yang, 2013: A modeling study of ice formation affected by aerosols. J. Geophys. Res. Atmos., 118, 11213–11227. doi: 10.1002/jgrd.50861
[29] Li, Z., Y. T. Zhang, Q. J. Liu, et al., 2018: A study of the influence of microphysical processes on Typhoon Nida (2016) using a new double-moment microphysics scheme in the wea-ther research and forecasting model. J. Trop. Meteor., 24, 123–130. doi: 10.16555/j.1006-8775.2018.02.001
[30] Li, Z., Z. S. Ma, Q. J. Liu, et al., 2019: The improvement of GRAPES double moment cloud scheme and case study of cloud precipitation. Part I: Modeling study of tropical convective cloud via GRAPES_SCM. Meteor. Mon., 45, 756–765. (in Chinese) doi: 10.7519/j.issn.1000-0526
[31] Liu, Q. J., Z. J. Hu, and X. J. Zhou, 2003: Explicit cloud schemes of HLAFS and simulation of heavy rainfall and clouds. Part II: Simulation of heavy rainfall and clouds. J. Appl. Meteor. Sci., 14, 68–77. (in Chinese) doi: 10.3969/j.issn.1001-7313.2003.z1.009
[32] Ma, Z. S., Q. J. Liu, C. F. Zhao, et al., 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652–667. doi: 10.1002/2017MS001234
[33] May, P. T., J. H. Mather, G. Vaughan, et al., 2008: FIELD RESEARCH: Characterizing oceanic convective cloud systems. Bull. Amer. Meteor. Soc., 89, 153–155. doi: 10.1175/BAMS-89-2-153
[34] Mei, H. X., X. Y. Shen, and W. G. Wang, 2015: Evaluation and comparison of two double-moment bulk microphysics schemes using WRF single-column model. Plateau Meteor., 34, 890–909. (in Chinese) doi: 10.7522/j.issn.1000-0534.2014.00113
[35] Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721. doi: 10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2
[36] Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: TMRR, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682. doi: 10.1029/97JD00237
[37] Phillips, V. T. J., P. J. Demott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 2757–2783. doi: 10.1175/2007JAS2546.1
[38] Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Press, Dordrecht, 954 pp.
[39] Ramage, C. S., 1971: Monsoon Meteorology. Academic Press, New York, 296 pp.
[40] Ramanathan, V., R. D. Cess, E. F. Harrison, et al., 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243, 57–63. doi: 10.1126/science.243.4887.57
[41] Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107. doi: 10.1002/qj.49712454804
[42] Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 2–20. doi: 10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2
[43] Shi, R. G., Q. J. Liu, and Z. S. Ma, 2015: Numerical simulation of aerosol effects on cloud and precipitation using GRAPES model. Meteor. Mon., 41, 272–285. (in Chinese) doi: 10.7519/j.issn.1000-0526.2015.03.002
[44] van den Heever, S. C., G. G. Carrió, W. R. Cotton, et al., 2006: Impacts of nucleating aerosol on florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 1752–1775. doi: 10.1175/JAS3713.1
[45] Varble, A., A. M. Fridlind, E. J. Zipser, et al., 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res. Atmos., 116, D12206. doi: 10.1029/2010JD015180
[46] Wang, D. L., G. Q. Xu, and L. H. Jia, 2013: The evaluation of cumulus parameterization schemes in GRAPES model and its improved experiments. Meteor. Mon., 39, 166–179. (in Chinese) doi: 10.7519/j.issn.1000-0526.2013.02.005
[47] Wapler, K., T. P. Lane, P. T. May, et al., 2010: Cloud-system-resolving model simulations of tropical cloud systems observed during the tropical warm pool-international cloud experiment. Mon. Wea. Rev., 138, 55–73. doi: 10.1175/2009MWR2993.1
[48] Xie, S. C., T. Hume, C. Jakob, et al., 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23, 57–79. doi: 10.1175/2009JCLI3071.1
[49] Xie, S. C., X. H. Liu, C. F. Zhao, et al., 2013: Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization. J. Climate, 26, 5981–5999. doi: 10.1175/JCLI-D-12-00517.1
[50] Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of Numerical Forecasting System GRAPES. Science Press, Beijing, 383 pp. (in Chinese)
[51] Yang, J. L., and X. S. Shen, 2011: The construction of SCM in GRAPES and its applications in two field experiment simulations. Adv. Atmos. Sci., 28, 534–550. doi: 10.1007/s00376-010-0062-8
[52] Zhang, J. C., and Q. J. Liu, 2006: Analysis of cloud schemes in simulation of short-term climatic process. Meteor. Mon., 32, 3–12. (in Chinese) doi: 10.3969/j.issn.1000-0526.2006.07.001
[53] Zhao, C. F., and T. J. Garrett, 2015: Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett., 42, 557–564. doi: 10.1002/2014GL062015
[54] Zhao, C. F., Y. L. Lin, F. Wu, et al., 2018: Enlarging rainfall area of tropical cyclones by atmospheric aerosols. Geophys. Res. Lett., 45, 8604–8611. doi: 10.1029/2018GL079427