[1] Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 1607–1623. doi: 10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2
[2] Blackmon, M. L., J. M. Wallace, N.-C. Lau, et al., 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 1040–1053. doi: 10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2
[3] Booth, J. F., L. A. Thompson, J. Patoux, et al., 2010: The signature of the midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 1160–1174. doi: 10.1175/2009JCLI3064.1
[4] Booth, J. F., Y. O. Kwon, S. Ko, et al., 2017: Spatial patterns and intensity of the surface storm tracks in CMIP5 models. J. Climate, 30, 4965–4981. doi: 10.1175/JCLI-D-16-0228.1
[5] Chang, E. K. M., and Y. F. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642–658. doi: 10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2
[6] Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163–2183. doi: 10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2
[7] Chang, E. K. M., Y. J. Guo, and X. M. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. Atmos., 117, D23118. doi: 10.1029/2012JD018578
[8] Chang, E. K. M., C.-G. Ma, C. Zheng, et al., 2016: Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett., 43, 2200–2208. doi: 10.1002/2016GL068172
[9] Chen, H. S., L. Liu, and Y. J. Zhu, 2013a: Possible linkage between winter extreme low temperature events over China and synoptic-scale transient wave activity. Sci. China: Earth Sci., 42, 1266–1280. doi: 10.1007/s11430-012-4442-z
[10] Chen, H. S., Y. J. Zhu, and L. Liu, 2013b: Relationship of synoptic-scale transient eddies and extreme winter precipitation events in the middle and lower reaches of the Yangtze River. Chinese J. Atmos. Sci., 37, 801–814. (in Chinese) doi: 10.3878/j.issn.1006-9895.2012.12033
[11] Chu, C. J., H. B. Hu, X.-Q. Yang, et al., 2020: Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases. Climate Dyn., 54, 2577–2595. doi: 10.1007/s00382-020-05134-4
[12] Fang, J. B., and X.-Q. Yang, 2016: Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean–atmosphere system. Climate Dyn., 47, 1989–2007. doi: 10.1007/s00382-015-2946-x
[13] Frankignoul, C., N. Sennéchael, Y. O. Kwon, et al., 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762–776. doi: 10.1175/2010JCLI3731.1
[14] Gan, B. L., and L. X. Wu, 2013: Seasonal and long-term coupling between wintertime storm tracks and sea surface temperature in the North Pacific. J. Climate, 26, 6123–6136. doi: 10.1175/JCLI-D-12-00724.1
[15] Harvey, B. J., L. C. Shaffrey, T. J. Woollings, et al., 2012: How large are projected 21st century storm track changes? Geophys. Res. Lett., 39, L18707. doi: 10.1029/2012GL052873
[16] Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2014: Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dyn., 43, 1171–1182. doi: 10.1007/s00382-013-1883-9
[17] Huang, J., Y. Zhang, X.-Q. Yang, et al., 2020: Impacts of North Pacific subtropical and subarctic oceanic frontal zones on the wintertime atmospheric large-scale circulations. J. Climate, 33, 1897–1914. doi: 10.1175/JCLI-D-19-0308.1
[18] Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[19] Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 1194–1199. doi: 10.1002/grl.50256
[20] Li, R., Z. Jing, Z. H. Chen, et al., 2017: Response of the Kuroshio Extension path state to near-term global warming in CMIP5 experiments with MIROC4h. J. Geophys. Res. Oceans, 122, 2871–2883. doi: 10.1002/2016JC012468
[21] Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648–1654. doi: 10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2
[22] Ma, X. J., and Y. C. Zhang, 2018: Interannual variability of the North Pacific winter storm track and its relationship with extratropical atmospheric circulation. Climate Dyn., 51, 3685–3698. doi: 10.1007/s00382-018-4104-8
[23] Meinshausen, M., S. J. Smith, K. Calvin, et al., 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213–241. doi: 10.1007/s10584-011-0156-z
[24] Mizuta, R., 2012: Intensification of extratropical cyclones associated with the polar jet change in the CMIP5 global warming projections. Geophys. Res. Lett., 39, L19707. doi: 10.1029/2012GL053032
[25] Moss, R. H., J. A. Edmonds, K. A. Hibbard, et al., 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756. doi: 10.1038/nature08823
[26] Nakamura, H., and A. S. Kazmin, 2003: Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J. Geophys. Res. Oceans, 108, 3078. doi: 10.1029/1999JC000085
[27] Nakamura, H., T. Sampe, Y. Tanimoto, et al., 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, C. Wang, S. P. Xie, and J. A. Carton, Eds., American Geophysical Union, Washington DC, Book Series, Vol. 147, 329–345, doi: 10.1029/147GM18.
[28] Nakamura, H., T. Sampe, A. Goto, et al., 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709. doi: 10.1029/2008GL034010
[29] Nakamura, M., and S. Yamane, 2010: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part II: North Pacific basin. J. Climate, 23, 6445–6467. doi: 10.1175/2010JCLI3017.1
[30] Omrani, N. E., F. Ogawa, H. Nakamura, et al., 2019: Key Role of the Ocean Western Boundary currents in shaping the Northern Hemisphere climate. Sci. Rep., 9, 3014. doi: 10.1038/s41598-019-39392-y
[31] Pfahl, S., and H. Wernli, 2012a: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 6770–6780. doi: 10.1175/JCLI-D-11-00705.1
[32] Pfahl, S., and H. Wernli, 2012b: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett., 39, L12807. doi: 10.1029/2012GL052261
[33] Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407. doi: 10.1029/2002JD002670
[34] Sampe, T., H. Nakamura, A. Goto, et al., 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 1793–1814. doi: 10.1175/2009JCLI3163.1
[35] Sanderson, B. M., R. Knutti, and P. Caldwell, 2015: A representative democracy to reduce interdependency in a multimodel ensemble. J. Climate, 28, 5171–5194. doi: 10.1175/JCLI-D-14-00362.1
[36] Seager, R., and I. R. Simpson, 2016: Western boundary currents and climate change. J. Geophys. Res. Oceans, 121, 7212–7214. doi: 10.1002/2016JC012156
[37] Shaw, T. A., M. Baldwin, E. A. Barnes, et al., 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656–664. doi: 10.1038/ngeo2783
[38] Small, R. J., S. P. DeSzoeke, S.-P. Xie, et al., 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274–319. doi: 10.1016/j.dynatmoce.2008.01.001
[39] Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805–828. doi: 10.1007/s00382-013-1980-9
[40] Taguchi, B., H. Nakamura, M. Nonaka, et al., 2009: Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 6536–6560. doi: 10.1175/2009JCLI2910.1
[41] Tamarin-Brodsky, T., and Y. Kaspi, 2017: Enhanced poleward propagation of storms under climate change. Nat. Geosci., 10, 908–913. doi: 10.1038/s41561-017-0001-8
[42] Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498. doi: 10.1175/BAMS-D-11-00094.1
[43] Van Vuuren, D. P., J. Edmonds, M. Kainuma, et al., 2011: The representative concentration pathways: An overview. Climatic Change, 109, 5–31. doi: 10.1007/s10584-011-0148-z
[44] Wang, L. Y., H. B. Hu, and X.-Q. Yang, 2019: The atmospheric responses to the intensity variability of subtropical front in the wintertime North Pacific. Climate Dyn., 52, 5623–5639. doi: 10.1007/s00382-018-4468-9
[45] Wettstein, J. J., and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 1420–1437. doi: 10.1175/2009JAS3194.1
[46] Woollings, T., J. M. Gregory, J. G. Pinto, et al., 2012: Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci., 5, 313–317. doi: 10.1038/ngeo1438
[47] Xiao, C. L., and Y. C. Zhang, 2015: Projected changes of wintertime synoptic-scale transient eddy activities in the East Asian eddy-driven jet from CMIP5 experiments. Geophys. Res. Lett., 42, 6008–6013. doi: 10.1002/2015GL064641
[48] Yang, H., G. Lohmann, W. Wei, et al., 2016: Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans, 121, 4928–4945. doi: 10.1002/2015JC011513
[49] Yao, Y., Z. Zhong, and X.-Q. Yang, 2016: Numerical experiments of the storm track sensitivity to oceanic frontal strength within the Kuroshio/Oyashio extensions. J. Geophys. Res. Atmos., 121, 2888–2900. doi: 10.1002/2015JD024381
[50] Yao, Y., Z. Zhong, X.-Q. Yang, et al., 2017: An observational study of the north pacific storm-track impact on the midlatitude oceanic front. J. Geophys. Res. Atmos., 122, 6962–6975. doi: 10.1002/2016JD026192
[51] Yao, Y., Z. Zhong, X.-Q. Yang, et al., 2018a: Seasonal variation of the North Pacific storm-track relationship with the Subarctic frontal zone intensity. Dyn. Atmos. Oceans, 83, 75–82. doi: 10.1016/j.dynatmoce.2018.06.003
[52] Yao, Y., Z. Zhong, and X.-Q. Yang, 2018b: Impacts of the subarctic frontal zone on the North Pacific storm track in the cold season: An observational study. Int. J. Climatol., 38, 2554–2564. doi: 10.1002/joc.5429
[53] Yao, Y., Z. Zhong, X.-Q. Yang, et al., 2019: Seasonal variations of the relationship between the North Pacific storm track and the meridional shifts of the subarctic frontal zone. Theor. Appl. Climatol., 136, 1249–1257. doi: 10.1007/s00704-018-2559-5
[54] Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701. doi: 10.1029/2005GL023684
[55] Yuan, L., and Z. N. Xiao, 2017: The variability of the oceanic front in Kuroshio Extension and its relationship with the Pacific storm track in winter. Chinese J. Atmos. Sci., 41, 1141–1155. (in Chinese) doi: 10.3878/j.issn.1006-9895.1705.16276
[56] Yuval, J., and Y. Kaspi, 2020: Eddy activity response to global warming-like temperature changes. J. Climate, 33, 1381–1404. doi: 10.1175/JCLI-D-19-0190.1
[57] Zhang, X., Q. Wang, and M. Mu, 2017: The impact of global warming on Kuroshio Extension and its southern recirculation using CMIP5 experiments with a high-resolution climate model MIROC4h. Theor. Appl. Climatol., 127, 815–827. doi: 10.1007/s00704-015-1672-y
[58] Zhang, Y. X., and Y. H. Ding, 2014: A study of simulation and prediction of extratropical cyclones over the Northern Hemisphere part II: Future changes under RCP4.5 projected by the 6 CMIP5 coupled models. Acta Meteor. Sinica, 72, 1171–1185. (in Chinese) doi: 10.11676/qxxb2014.073
[59] Zhou, X. Y., W. J. Zhu, and C. Gu, 2015: Possible influence of the variation of the northern Atlantic storm track on the activity of cold waves in China during winter. Chinese J. Atmos. Sci., 39, 978–990. (in Chinese) doi: 10.3878/j.issn.1006-9895.1501.14259