[1] Arndt, D. S., J. B. Basara, R. A. McPherson, et al., 2009: Observations of the overland reintensification of tropical storm Erin (2007). Bull. Amer. Meteor. Soc., 90, 1079–1093. doi: 10.1175/2009BAMS2644.1
[2] Beljaars, A. C. M., P. Viterbo, M. J. Miller, et al., 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362–383. doi: 10.1175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2
[3] Betts, A. K., J. H. Ball, A. Beljaars, et al., 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res. Atmos., 101, 7209–7225. doi: 10.1029/95JD02135
[4] Bozeman, M. L., D. Niyogi, S. Gopalakrishnan, et al., 2012: An HWRF-based ensemble assessment of the land surface feedback on the post-landfall intensification of Tropical Storm Fay (2008). Nat. Hazards, 63, 1543–1571. doi: 10.1007/s11069-011-9841-5
[5] Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961. doi: 10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2
[6] Breuer, H., F. Ács, B. Laza, et al., 2012: Sensitivity of MM5-simulated planetary boundary layer height to soil dataset: comparison of soil and atmospheric effects. Theor. Appl. Climatol., 109, 577–590. doi: 10.1007/s00704-012-0597-y
[7] Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
[8] Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res. Oceans, 83, 1889–1903. doi: 10.1029/JC083iC04p01889
[9] Eltahir, E. A. B., 1998: A soil moisture-rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765–776. doi: 10.1029/97WR03499
[10] Emanuel, K., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 3863–3872. doi: 10.1175/2008MWR2409.1
[11] Evans, C., R. S. Schumacher, and T. J. Jr. Galarneau, 2011: Sensitivity in the overland reintensification of Tropical Cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 3848–3870. doi: 10.1175/2011MWR3593.1
[12] Ferrier, B. S., Y. Jin, Y. Lin, et al., 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. 19th Conference on Weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction. American Meteorological Society, San Antonio, TX.
[13] Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development. J. Hydrometeorol., 4, 552–569. doi: 10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2
[14] Gopalakrishnan, S. G., F. Jr. Marks, X. J. Zhang, et al., 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 1762–1784. doi: 10.1175/2010MWR3535.1
[15] Gopalakrishnan, S. G., F. Jr. Marks, J. A. Zhang, et al., 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524–541. doi: 10.1175/JAS-D-11-0340.1
[16] Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546–564. doi: 10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2
[17] Horváth, Á., F. Ács, and H. Breuer, 2009: On the relationship between soil, vegetation and severe convective storms: Hungarian case studies. Atmos. Res., 93, 66–81. doi: 10.1016/j.atmosres.2008.10.007
[18] Hou, D. C., M. Charles, Y. Luo, et al., 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydrometeorol., 15, 2542–2557. doi: 10.1175/JHM-D-11-0140.1
[19] Janjic, Z. I., R. Gall, and M. E. Pyle, 2010: Scientific documentation for the NMM solver. NCAR Tech. Note NCAR/TN-4771STR, NCAR, 53 pp, doi: 10.5065/D6MW2F3Z.
[20] Jones, S. C., P. A. Harr, J. Abraham, et al., 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 1052–1092. doi: 10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2
[21] Kishtawal, C. M., D. Niyogi, A. Kumar, et al., 2012: Sensitivity of inland decay of North Atlantic tropical cyclones to soil parameters. Nat. Hazards, 63, 1527–1542. doi: 10.1007/s11069-011-0015-2
[22] Koster, R. D., Z. C. Guo, R. Q. Yang, et al., 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 4322–4335. doi: 10.1175/2009JCLI2832.1
[23] Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci., 31, 893–919. doi: 10.1175/1520-0469(1974)031<0893:SOATCD>2.0.CO;2
[24] Lanicci, J. M., T. N. Carlson, and T. T. Warner, 1987: Sensitivity of the Great Plains severe-storm environment to soil-moisture distribution. Mon. Wea. Rev., 115, 2660–2673. doi: 10.1175/1520-0493(1987)115<2660:SOTGPS>2.0.CO;2
[25] Lin, L-F, and Z. Pu, 2018: Characteristics of Background Error Covariance of Soil Moisture and Atmospheric States in Strongly Coupled Land–Atmosphere Data Assimilation. J. Appl. Meteorol. Climatol., 57, 2507–2529.
[26] Pan, H.-L., and J.-S. Wu, 1995: Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note 409. U.S. National Center for Environmental Prediction, Washington, DC, 40 pp.
[27] Pu, Z., H. Zhang, and J. A. Anderson, 2013: Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts. Tellus A, 65, 19620.
[28] Pu, Z., S. X. Zhang, M. J. Tong, et al., 2016: Influence of the self-consistent regional ensemble background error covariance on hurricane inner-core data assimilation with the GSI-based hybrid system for HWRF. J. Atmos. Sci., 73, 4911–4925. doi: 10.1175/JAS-D-16-0017.1
[29] Rossow, W. B., Y. C. Zhang, and G. Tselioudis, 2016: Atmospheric diabatic heating in different weather states and the general circulation. J. Climate, 29, 1059–1065. doi: 10.1175/JCLI-D-15-0760.1
[30] Schwarzkopf, M. D., and S. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res. Atmos., 96, 9075–9096. doi: 10.1029/89JD01598
[31] Shen, R. J., E. R. Reiter, and J. F. Bresch, 1986: Some aspects of the effects of sensible heating on the development of summer weather systems over the Tibetan Plateau. J. Atmos. Sci., 43, 2241–2260. doi: 10.1175/1520-0469(1986)043<2241:SAOTEO>2.0.CO;2
[32] Sirutis, J. J., and K. Miyakoda, 1990: Subgrid scale physics in 1-month forecasts. Part I: Experiment with four parameterization packages. Mon. Wea. Rev., 118, 1043–1064. doi: 10.1175/1520-0493(1990)118<1043:SSPIMF>2.0.CO;2
[33] Smith, R. K., 2003: A simple model of the hurricane boundary layer. Quart. J. Roy. Meteor. Soc., 129, 1007–1027. doi: 10.1256/qj.01.197
[34] Tallapragada, V., L. Bernardet, M. K. Biswas, et al., 2014: Hurricane Weather Research and Forecasting (HWRF) Model: 2014 Scientific Documentation. NCAR HWRF Development Testbed Center Tech. Rep., 99 pp.
[35] Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129–148. doi: 10.1007/BF00122760
[36] Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291–304. doi: 10.1175/1520-0493(1994)122<0291:TSDADS>2.0.CO;2
[37] Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane–environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 2264–2282. doi: 10.1175/1520-0469(1996)053<2264:ANSOTF>2.0.CO;2
[38] Zhang, F. M., and Z. X. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74, 1879–1905. doi: 10.1175/JAS-D-16-0214.1
[39] Zhang, F. M., Z. X. Pu, and C. H. Wang, 2017: Effects of boundary layer vertical mixing on the evolution of hurricanes over land. Mon. Wea. Rev., 145, 2343–2361. doi: 10.1175/MWR-D-16-0421.1
[40] Zhang, J. A., D. S. Nolan, R. F. Rogers, et al., 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 3136–3155. doi: 10.1175/MWR-D-14-00339.1
[41] Zheng, X. Y., and E. A. B. Eltahir, 1998: A soil moisture–rainfall feedback mechanism: 2. Numerical experiments. Water Resour. Res., 34, 777–785. doi: 10.1029/97WR03497