[1] Bi, B. G., M. Y. Jiao, and Z. C. Li, 2004: Contrast analysis of meteorological and hydrological features of extremely heavy rainfall causing severe floods in Huaihe River valley. J. Nanjing Inst. Meteor., 27, 577–586. (in Chinese) doi: 10.3969/j.issn.1674-7097.2004.05.001
[2] Chen, L. J., W. Gu, Z. S. Gong, et al., 2019: Precursory signals of the 2018 summer climate in China and evaluation of real-time prediction. Meteor. Mon., 45, 553–564. (in Chinese)
[3] Dai, T. L., Q. L. Wang, G. F. Wang, et al., 2021: Climatic characteristics and major meteorological events over China in 2020. Meteor. Mon., 47, 478–487. (in Chinese) doi: 10.7519/j.issn.1000-0526.2021.04.009
[4] Ding, T., R. Q. Han, and H. Gao, 2020: Overview of climate prediction for the summer 2019 and the precursory signals. Meteor. Mon., 46, 556–565. (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.04.010
[5] Ding, Y. H., Y. Y. Liu, and Z. Z. Hu, 2021: The record-breaking Meiyu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., doi: 10.1007/s00376-021-0361-2.
[6] Gao, H., and F. Xue, 2006: Seasonal variation of the cross-equatorial flows and their influences on the onset of South China Sea summer monsoon. Climatic Environ. Res., 11, 57–68. (in Chinese) doi: 10.3878/j.issn.1006-9585.2006.01.05
[7] General Administration of Quality Supervision, Inspection, and Quarantine of the People’s Republic of China, 2017: GB/T 33671-2017 Meiyu Monitoring Indices. Standards Press of China, Beijing, 15 pp.
[8] Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462. doi: 10.1002/qj.49710644905
[9] Jiang, W., and H. Gao, 2013: New features of Meiyu over middle-lower reaches of Yangtze River in the 21st century and the possible causes. Meteor. Mon., 39, 1139–1144. (in Chinese)
[10] Jiang, Z. H., Y. C. Shen, T. T. Ma, et al., 2014: Changes of precipitation intensity spectra in different regions of mainland China during 1961–2006. J. Meteor. Res., 28, 1085–1098. doi: 10.1007/s13351-014-3233-1
[11] Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1644. doi: 10.1175/bams-83-11-1631
[12] Li, C., and S. L. Li, 2014: Interannual seesaw between the Somali and the Australian cross-equatorial flows and its connection to the East Asian summer monsoon. J. Climate, 27, 3966–3981. doi: 10.1175/jcli-d-13-00288.1
[13] Li, D. L., P. C. Shao, H. Wang, et al., 2013: Advances in research of the north boundary belt of East Asia subtropical summer monsoon in China. Plateau Meteor., 32, 305–314. (in Chinese)
[14] Li, L., C. W. Zhu, R. H. Zhang, et al., 2021: Roles of the Tibetan Plateau vortices in the record Meiyu rainfall in 2020. Atmos. Sci. Lett., 22, e1017. doi: 10.1002/asl.1017
[15] Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277. Available online at https://journals.ametsoc.org/view/journals/bams/77/6/1520-0477-77_6_1274.xml.
[16] Liu, B. Q., Y. H. Yan, C. W. Zhu, et al., 2020: Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47, e2020GL090342. doi: 10.1029/2020gl090342
[17] Liu, D. N., J. H. He, Y. H. Yao, et al., 2011: Analysis of the circulation structure during Meiyu and its evolution characteristics. J. Trop. Meteor., 27, 465–474. (in Chinese) doi: 10.3969/j.issn.1004-4965.2011.04.004
[18] Liu, X. W., Z. B. Sun, D. H. Ni, et al., 2009: Connection of 105°E and 125°E cross-equatorial flow with the Southern and Northern hemispheric circulations. Chinese J. Atmos. Sci., 33, 443–458. (in Chinese) doi: 10.3878/j.issn.1006-9895.2009.03.04
[19] Liu, Y. Y., Y. G. Wang, and Z. J. Ke, 2021: Characteristics and possible causes for the climate anomalies over China in summer 2020. Meteor. Mon., 47, 117–126. (in Chinese) doi: 10.7519/j.issn.1000-0526.2021.01.011
[20] Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 25–43. doi: 10.2151/jmsj1965.44.1_25
[21] National Climate Center, 2018: East Asian Monsoon Yearbook 2016. China Meteorological Press, Beijing, 113–118. (in Chinese)
[22] Niu, R. Y., and R. H. Jin, 2009: Causes analysis of large scale circulation of abnormal characteristic in Meiyu period of 2008. Plateau Meteor., 28, 1326–1334. (in Chinese)
[23] Niu, R. Y., and P. M. Zhai, 2013: Synoptic verification of medium-extended-range forecasts of the Northwest Pacific subtropical high and South Asian high based on multi-center TIGGE data. Acta Meteor. Sinica, 27, 725–741. doi: 10.1007/s13351-013-0513-0
[24] Niu, R. Y., C. H. Liu, W. Y. Liu, et al., 2018: Characteristics of temporal and spatial distribution of regional rainstorm processes to the east of 95°E in China during 1981–2015. Acta Meteor. Sinica, 76, 182–195. (in Chinese)
[25] Ren, R. C., Y. M. Liu, and G. X. Wu, 2007: Impact of South Asia High on the short-term variation of the subtropical anticyclone over western Pacific in July 1998. Acta Meteor. Sinica, 65, 183–197. (in Chinese) doi: 10.11676/qxxb2007.018
[26] Reynolds, R. W., T. M. Smith, C. Y. Liu, et al., 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496. doi: 10.1175/2007jcli1824.1
[27] Si, D., Y. H. Ding, and Y. J. Liu, 2009: Decadal northward shift of the Meiyu belt and the possible cause. Chinese Sci. Bull., 54, 4742–4748. doi: 10.1007/s11434-009-0385-y
[28] Sui, X. X., and B. L. Wu, 2017: The relationships between the ascending motion in the intertropical convergence zone in the Northwest Pacific and cross-equatorial flow and Australian high. Desert Oasis Meteor., 11, 54–61. (in Chinese)
[29] Takaya, Y., I. Ishikawa, C. Kobayashi, et al., 2020: Enhanced Meiyu-Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671. doi: 10.1029/2020gl090671
[30] Tao, S. Y., and J. Wei, 2006: The westward, northward advance of the subtropical high over the West Pacific in summer. J. Appl. Meteor. Sci., 17, 513–525. (in Chinese) doi: 10.3969/j.issn.1001-7313.2006.05.001
[31] Wang, Y. G., and Z. H. Zheng, 2018: Precursory signal analysis of summer rainfall prediction in China in 2017. Meteor. Mon., 44, 565–571. (in Chinese) doi: 10.7519/j.issn.1000-0526.2018.04.010
[32] Wang, Y. G., D. J. Lou, and Y. Y. Liu, 2020: Characteristics and causes analysis of abnormal Meiyu rainfall in the middle and lower reaches of Yangtze River valley in 2020. Torrential Rain and Disasters, 39, 549–554. (in Chinese) doi: 10.3969/j.issn.1004-9045.2020.06.001
[33] Xie, S. P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747. doi: 10.1175/2008jcli2544.1
[34] Xu, H. M., J. H. He, and B. Zhou, 2001: The features of atmospheric circulation during Meiyu onset and possible mehanisms for westward extension (northward shift) of Pacific subtropical high. Quart. J. Appl. Meteor., 12, 150–158. (in Chinese) doi: 10.3969/j.issn.1001-7313.2001.02.003
[35] Yuan, Y., S. Yang, and Z. Q. Zhang, 2012: Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: Possible effects of Indian Ocean SST. J. Climate, 25, 7867–7883. doi: 10.1175/jcli-d-12-00004.1
[36] Yuan, Y., H. Gao, W. J. Li, et al., 2017: The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998. J. Meteor. Res., 31, 261–277. doi: 10.1007/s13351-017-6192-5
[37] Zhang, F. H., T. Chen, F. Zhang, et al., 2020: Extreme features of severe precipitation in Meiyu period over the middle and lower reaches of Yangtze River basin in June–July 2020. Meteor. Mon., 46, 1405–1414. (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.11.002
[38] Zhang, Q. Y., and S. Y. Tao, 1998: Influence of Asian mid-high latitude circulation on East Asian summer rainfall. Acta Meteor. Sinica, 56, 199–211. (in Chinese) doi: 10.11676/qxxb1998.019
[39] Zhang, Q. Y., and S. Y. Tao, 1999: The study of the sudden northward jump of the subtropical high over the western Pacific. Acta Meteor. Sinica, 57, 539–548. (in Chinese) doi: 10.11676/qxxb1999.052
[40] Zhao, J. H., L. J. Chen, and K. G. Xiong, 2018a: Climate characteristics and influential systems of Meiyu to the south of the Yangtze River based on the new monitoring rules. Acta Meteor. Sinica, 76, 680–698. (in Chinese)
[41] Zhao, J. H., L. J. Chen, and D. Q. Wang, 2018b: Characteristics and causes analysis of abnormal Meiyu in China in 2016. Chinese J. Atmos. Sci., 42, 1055–1066. (in Chinese) doi: 10.3878/j.issn.1006-9895.1708.17170
[42] Zhao, X. L., and R. Y. Niu, 2019: Similarities and differences of summer persistent heavy rainfall and atmospheric circulation characteristics in the middle and lower reaches of the Yangtze River between 2016 and 1998. Torrential Rain and Disasters, 38, 615–623. (in Chinese)
[43] Zheng, J. Y., and C. Z. Wang, 2021: Influences of three oceans on record-breaking rainfall over the Yangtze River Valley in June 2020. Sci. China Earth Sci., 64, 1607–1618. doi: 10.1007/s11430-020-9758-9
[44] Zhou, Z. Q., S. P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA, 118, e2022255118. doi: 10.1073/pnas.2022255118
[45] Zhu, Z., Z. Zhong, and Y. Ha, 2017: Relationship between typhoon cyclone during Meiyu period over the Northwest Pacific and Jianghuai Meiyu. J. Meteor. Sci., 37, 522–528. (in Chinese)