[1] Bao, Q., X. F. Wu, J. X. Li, et al., 2019: Outlook for El Niño and the Indian Ocean Dipole in autumn–winter 2018–2019. Chinese Sci. Bull., 64, 73–78. (in Chinese) doi: 10.1360/N972018-00913
[2] Barnston, A. G., M. K. Tippett, M. L. L’Heureux, et al., 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631–651. doi: 10.1175/BAMS-D-11-00111.1
[3] Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1712. doi: 10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2
[4] Bjerknes, J., 1969: Atmospheric teleconnections from the equato-rial Pacific. Mon. Wea. Rev., 97, 163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
[5] Cai, W. J., S. Borlace, M. Lengaigne, et al., 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111–116. doi: 10.1038/nclimate2100
[6] Cai, W. J., A. Santoso, G. J. Wang, et al., 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849–859. doi: 10.1038/nclimate2743
[7] Cai, W. J., G. J. Wang, B. Dewitte, et al., 2018: Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564, 201–206. doi: 10.1038/s41586-018-0776-9
[8] Cai, W. J., L. X. Wu, M. Lengaigne, et al., 2019: Pantropical climate interactions. Science, 363, eaav4236. doi: 10.1126/science.aav4236
[9] Cai, Y., H. Li, and R. H. Zhang, 2008: A study on relationship between ENSO and tropical Indian Ocean temperature. Acta Meteor. Sinica, 66, 120–124. (in Chinese) doi: 10.11676/qxxb2008.012
[10] Chao, J. P., 1993: El Niño and Southern Oscillation Dynamics. China Meteorological Press, Beijing, 2–3. (in Chinese)
[11] Chao, J. P., 2002: ENSO: The harmonic ocean–atmosphere interaction in the tropics. Adv. Mar. Sci., 20, 1–8. (in Chinese) doi: 10.3969/j.issn.1671-6647.2002.03.001
[12] Chao, J. P., and R. H. Zhang, 1988: The air–sea interaction waves in the tropics and their instabilities. Acta Meteor. Sinica, 2, 275–287.
[13] Chao, J. P., and Z. G. Wang, 1993: Simple air–sea coupled waves in the tropics—The interaction between Rossby and Kelvin waves. Acta Meteor. Sinica, 51, 257–265. (in Chinese) doi: 10.11676/qxxb1993.035
[14] Chao, J. P., and L. Zhang, 1998: Responding characteristics of different regions over the tropical oceans to relaxation of the trade winds—A consideration to El Niño studies. Scientia Atmos. Sinica, 22, 428–442. (in Chinese) doi: 10.3878/j.issn.1006-9895.1998.04.05
[15] Chao, J. P., and Q. C. Chao, 2002: The dynamics of the response of tropical western Pacific to wind stress. Chinese J. Atmos. Sci., 26, 145–160. (in Chinese) doi: 10.3878/j.issn.1006-9895.2002.02.01
[16] Chao, J. P., and S. Y. Yuan, 2003: Relationship of air–sea interaction in the tropical Pacific and Indian Oceans. Prog. Nat. Sci., 13, 1280–1285. (in Chinese) doi: 10.3321/j.issn:1002-008X.2003.12.008
[17] Chao, J. P., and S. Y. Yuan, 2004: Concerted development of atmosphere–ocean interaction events in the tropical Indian Ocean and Pacific Ocean. Adv. Mar. Sci., 22, 247–252. (in Chinese) doi: 10.3969/j.issn.1671-6647.2004.03.001
[18] Chao, J. P., S. Y. Yuan, Q. C. Chao, et al., 2002: A data analysis study on the evolution of the El Niño/La Niña cycle. Adv. Atmos. Sci., 19, 837–844. doi: 10.1007/s00376-002-0048-2
[19] Chao, J. P., S. Y. Yuan, and Y. Cai, 2003: Large-scale air–sea interaction in the tropical Indian Ocean. Acta Meteor. Sinica, 61, 251–256. (in Chinese) doi: 10.3321/j.issn:0577-6619.2003.02.011
[20] Chao, J. P., Q. C. Chao, and L. Liu, 2005: The ENSO events in the tropical Pacific and Dipole events in the Indian Ocean. Acta Meteor. Sinica, 63, 594–602. (in Chinese) doi: 10.3321/j.issn:0577-6619.2005.05.005
[21] Chao, Q. C., and J. P. Chao, 2001: The influence of western tropi-cal Pacific and eastern Indian Ocean on the development of ENSO events. Prog. Nat. Sci., 11, 1293–1300. (in Chinese) doi: 10.3321/j.issn:1002-008X.2001.12.010
[22] Chen, D. K., M. A. Cane, A. Kaplan, et al., 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–736. doi: 10.1038/nature02439
[23] Chen, D. K., T. Lian, C. B. Fu, et al., 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339–345. doi: 10.1038/ngeo2399
[24] Chen, H.-C., Z.-Z. Hu, B. H. Huang, et al., 2016: The role of reversed equatorial zonal transport in terminating an ENSO event. J. Climate, 29, 5859–5877. doi: 10.1175/JCLI-D-16-0047.1
[25] Chen, J. N., G. T. Song, J. T. Chu, et al., 2003: Anomalous sea temperature of westward transferring north equatorial current and ENSO. J. Trop. Oceanogr., 22, 10–17. (in Chinese) doi: 10.3969/j.issn.1009-5470.2003.04.002
[26] Chen, L., Y. Q. Yu, and D.-Z. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26, 4947–4961. doi: 10.1175/JCLI-D-12-00575.1
[27] Chen, L., T. Li, and Y. Q. Yu, 2015: Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Climate, 28, 3250–3274. doi: 10.1175/JCLI-D-14-00439.1
[28] Chen, L., T. Li, Y. Q. Yu, et al., 2017: A possible explanation for the divergent projection of ENSO amplitude change under global warming. Climate Dyn., 49, 3799–3811. doi: 10.1007/s00382-017-3544-x
[29] Chen, L. T., 1982: Interaction between the subtropical high over the North Pacific and the sea surface temperature of the eastern equatorial Pacific. Scientia Atmos. Sinica, 6, 148–156. (in Chinese) doi: 10.3878/j.issn.1006-9895.1982.02.05
[30] Chen, S.-F., and R. G. Wu, 2017: An enhanced influence of sea surface temperature in the tropical northern Atlantic on the following winter ENSO since the early 1980s. Atmos. Ocean. Sci. Lett., 10, 175–182. doi: 10.1080/16742834.2016.1259542
[31] Chen, W., R.-Y. Lu, and B. W. Dong, 2014: Revisiting asymmetry for the decaying phases of El Niño and La Niña. Atmos. Ocean. Sci. Lett., 7, 275–278. doi: 10.3878/j.issn.1674-2834.13.0091
[32] Chen, Y. L., Y. P. Zhao, M. N. Zhang, et al., 2005: The characteristics of interannual and interdecadal variability of equatorial Pacific Ocean temperature anomalies and ENSO cycle. Acta Oceanol. Sinica, 27, 39–45. (in Chinese) doi: 10.3321/j.issn:0253-4193.2005.02.005
[33] Chi, J., Y. Du, Y. Zhang, et al., 2019: A new perspective of the 2014/15 failed El Niño as seen from ocean salinity. Sci. Rep., 9, 2720. doi: 10.1038/s41598-019-38743-z
[34] Clarke, A. J., 2014: El Niño physics and El Niño predictability. Annu. Rev. Mar. Sci., 6, 79–99. doi: 10.1146/annurev-marine-010213-135026
[35] Deng, B. S., H. T. Liu, and J. F. Chou, 2010: Analysis of the linkages of large-scale air–sea interaction between the tropical Indian Ocean and the Pacific Ocean during El Niño events. J. Trop. Meteor., 26, 357–363. (in Chinese) doi: 10.3969/j.issn.1004-4965.2010.03.013
[36] Deng, L., X.-Q. Yang, and Q. Xie, 2010: ENSO frequency change in coupled climate models as response to the increasing CO2 concentration. Chinese Sci. Bull., 55, 744–751. doi: 10.1007/s11434-009-0491-x
[37] Ding, R. Q., J. P. Li, and Y.-H. Tseng, 2015a: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44, 2017–2034. doi: 10.1007/s00382-014-2303-5
[38] Ding, R. Q., J. P. Li, Y.-H. Tseng, et al., 2015b: Influence of the North Pacific Victoria mode on the Pacific ITCZ summer precipitation. J. Geophys. Res. Atmos., 120, 964–979. doi: 10.1002/2014JD022364
[39] Ding, R. Q., J. P. Li, Y.-H. Tseng, et al., 2015c: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. J. Geophys. Res. Atmos., 120, 27–45. doi: 10.1002/2014JD022221
[40] Ding, R. Q., J. P. Li, Y.-H. Tseng, et al., 2017a: Joint impact of North and South Pacific extratropical atmospheric variability on the onset of ENSO events. J. Geophys. Res. Atmos., 122, 279–298. doi: 10.1002/2016JD025502
[41] Ding, R. Q., J. P. Li, Y.-H. Tseng, et al., 2017b: Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Climate Dyn., 49, 1321–1339. doi: 10.1007/s00382-016-3389-8
[42] Ding, Y. H., Q. Q. Li, W. J. Li, et al., 2004: Advance in seasonal dynamical prediction operation in China. Acta Meteor. Sinica, 62, 598–612. (in Chinese) doi: 10.11676/qxxb2004.059
[43] Ding, Y. G., Z. Q. Cheng, and B. Y. Cheng, 2002: A prediction experiment by using the generalized canonical mixed regression model based on MSSA-SVD for ENSO. Acta Meteor. Sinica, 60, 361–369. (in Chinese) doi: 10.3321/j.issn:0577-6619.2002.03.012
[44] Duan, W. S., X. C. Liu, K. Y. Zhu, et al., 2009: Exploring the initial errors that cause a significant “spring predictability bar-rier” for El Niño events. J. Geophys. Res. Oceans, 114, C04022. doi: 10.1029/2008JC004925
[45] Duan, W. S., R. Zhang, Y. S. Yu, et al., 2013: The role of nonlinearities associated with air–sea coupling processes in El Niño’s peak-phase locking. Sci. China Earth Sci., 56, 1988–1996. doi: 10.1007/s11430-013-4629-y
[46] Duan, W. S., C. M. Huang, and H. Xu, 2017: Nonlinearity modulating intensities and spatial structures of central Pacific and eastern Pacific El Niño events. Adv. Atmos. Sci., 34, 737–756. doi: 10.1007/s00376-017-6148-9
[47] Fu, C. B., and J. O. Fletcher, 1985: Two types of equatorial warming at the time of El Niño. Chinese Sci. Bull., 30, 596–599. (in Chinese) doi: 10.1360/csb1985-30-8-596
[48] Fu, C. B., H. F. Diaz, and J. O. Fletcher, 1986: Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Mon. Wea. Rev., 114, 1716–1739. doi: 10.1175/1520-0493(1986)114<1716:COTROS>2.0.CO;2
[49] Fu, Y. F., and R. H. Huang, 1996: The effect of the westerly anomalies over the tropical Pacific on the occurrence of ENSO events. Scientia Atmos. Sinica, 20, 641–654. (in Chinese) doi: 10.3878/j.issn.1006-9895.1996.06.01
[50] Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462. doi: 10.1002/qj.49710644905
[51] Guo, Y.-P., and Z.-M. Tan, 2018: The Hadley circulation regime change: Combined effect of the western Pacific warming and increased ENSO amplitude. J. Climate, 31, 9739–9751. doi: 10.1175/JCLI-D-18-0306.1
[52] Guo, Y. Y., Z. P. Wen, R. D. Chen, et al., 2019: Effect of boreal spring precipitation anomaly pattern change in the late 1990s over tropical Pacific on the atmospheric teleconnection. Climate Dyn., 52, 401–416. doi: 10.1007/s00382-018-4149-8
[53] He, J. X., Z. H. Yu, and X.-Q. Yang, 2005: Temporal characteristics of Pacific Decadal Oscillation (PDO) and ENSO and their relationship analyzed with method of Empirical Mode Decomposition (EMD). Acta Meteor. Sinica, 19, 83–92.
[54] Hu, Z.-Z., A. Kumar, H.-L. Ren, et al., 2013: Weakened interan-nual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 2601–2613. doi: 10.1175/JCLI-D-12-00265.1
[55] Hua, L. J., Y. Q. Yu, and D.-Z. Sun, 2015: A further study of ENSO rectification: Results from an OGCM with a seasonal cycle. J. Climate, 28, 1362–1382. doi: 10.1175/JCLI-D-14-00404.1
[56] Huang, R. H., X. Y. Zang, R. K. Zhang, et al., 1998: The westerly anomalies over the tropical Pacific and their dynamical effect on the ENSO cycles during 1980–1994. Adv. Atmos. Sci., 15, 135–151. doi: 10.1007/s00376-998-0035-3
[57] Huang, R. H., R. H. Zhang, and B. L. Yan, 2001: Dynamical effect of the zonal wind anomalies over the tropical western Pacific on ENSO cycles. Sci. China Ser. D Earth Sci., 44, 1089–1098. doi: 10.1007/BF02906865
[58] Ji, J. J., and J. P. Chao, 1979: Long-range oscillations in the tropi-cal ocean–atmospheric coupled system and intertropical convergence zone in the atmosphere. Acta Meteor. Sinica, 37, 32–43. (in Chinese) doi: 10.11676/qxxb1979.027
[59] Ji, Z. G., and J. P. Chao, 1987: Teleconnections of the sea surface temperature in the Indian Ocean with sea surface temperature in the eastern equatorial Pacific, and with the 500 hPa geopotential height field in the Northern Hemisphere. Adv. Atmos. Sci., 4, 343–348. doi: 10.1007/BF02663604
[60] Ji, Z. G., and J. P. Chao, 1990: Instability of the oceanic waves in the tropical region. Acta Meteor. Sinica, 4, 135–145.
[61] Jia, F., W. J. Cai, L. X. Wu, et al., 2019: Weakening Atlantic Niño–Pacific connection under greenhouse warming. Sci. Adv., 5, eaax4111. doi: 10.1126/sciadv.aax4111
[62] Jiang, N., and C. W. Zhu, 2018: Asymmetric changes of ENSO diversity modulated by the cold tongue mode under recent glo-bal warming. Geophys. Res. Lett., 45, 12506–12513. doi: 10.1029/2018GL079494
[63] Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829. doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
[64] Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847. doi: 10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2
[65] Jin, F.-F., and B. Z. Zhu, 1988a: A study on the equilibrium state of nonlinear dynamic system of air–sea coupled oscillation. Sci. China Ser. B, (7), 777–786. (in Chinese) doi: 10.1360/zb1988-18-7-777
[66] Jin, F.-F., and B. Z., Zhu, 1988b: Dynamics of the oscillation in the nonlinear interaction atmosphere and ocean system and annual variation of the atmospheric circulation. Chinese J. Atmos. Sci., 12, 346–356. (in Chinese) doi: 10.3878/j.issn.1006-9895.1988.04.02
[67] Kang, X. B., R. H. Huang, Z. G. Wang, et al., 2014: Sensitivity of ENSO variability to Pacific freshwater flux adjustment in the Community Earth System Model. Adv. Atmos. Sci., 31, 1009–1021. doi: 10.1007/s00376-014-3232-2
[68] Kang, X. B., R.-H. Zhang, C. Gao, et al., 2017: An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Mo-del. Sci. Rep., 7, 17123. doi: 10.1038/s41598-017-17390-2
[69] Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632. doi: 10.1175/2008JCLI2309.1
[70] Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515. doi: 10.1175/2008JCLI2624.1
[71] Li, C. Y., 1989: Frequent activities of stronger aero-troughs in East Asia in wintertime and the occurrence of the El Niño event. Sci. China Ser. B, 32, 976–985.
[72] Li, C. Y., 1990: Interaction between anomalous winter monsoon in East Asia and El Niño events. Adv. Atmos. Sci., 7, 36–46. doi: 10.1007/BF02919166
[73] Li, C. Y., and Y. P. Zhou, 1994: Relationship between intraseaso-nal oscillation in the tropical atmosphere and ENSO. Acta Geophys. Sinica, 37, 17–26. (in Chinese)
[74] Li, C. Y., and G. L. Li, 1995: Kinetic energy changes in the tropi-cal atmospheric system associated with El Niño. Chinese Sci. Bull., 40, 1866–1869. (in Chinese) doi: 10.1360/csb1995-40-20-1866
[75] Li, C. Y., and M. Q. Mu., 1998: Numerical simulations of anomalous winter monsoon in East Asia exciting ENSO. Scientia Atmos. Sinica, 22, 481–490. (in Chinese) doi: 10.3878/j.issn.1006-9895.1998.04.10
[76] Li, C. Y., and M. Q. Mu, 1999: El Niño occurrence and sub-surface ocean temperature anomalies in the Pacific warm pool. Chinese J. Atmos. Sci., 23, 513–521. (in Chinese) doi: 10.3878/j.issn.1006-9895.1999.05.01
[77] Li, C. Y., and M. Q. Mu, 2000: Relationship between East Asian winter monsoon, warm pool situation and ENSO cycle. Chinese Sci. Bull., 45, 1448–1455. doi: 10.1007/BF02898885
[78] Li, C. Y., and M. Q. Mu, 2001: The Dipole in the equatorial In-dian Ocean and its impacts on climate. Chinese J. Atmos. Sci., 25, 433–443. (in Chinese) doi: 10.3878/j.issn.1006-9895.2001.04.01
[79] Li, C. Y., and M. Q. Mu, 2002: A further inquiry on essence of the ENSO cycle. Adv. Earth Sci., 17, 631–638. (in Chinese) doi: 10.3321/j.issn:1001-8166.2002.05.001
[80] Li, H. Y., W. J. Zhang, and J. H. He, 2016: Influences of ENSO and its combination mode on seasonal precipitation over eastern China. Acta Meteor. Sinica, 74, 322–334. (in Chinese) doi: 10.11676/qxxb2016.025
[81] Li, J. B., S.-P. Xie, E. R. Cook, et al., 2011: Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Climate Change, 1, 114–118. doi: 10.1038/nclimate1086
[82] Li, J. B., S.-P. Xie, E. R. Cook, et al., 2013: El Niño modulations over the past seven centuries. Nat. Climate Change, 3, 822–826. doi: 10.1038/nclimate1936
[83] Li, Y., R. Y. Lu, and B. W. Dong, 2007: The ENSO–Asian monsoon interaction in a coupled ocean–atmosphere GCM. J. Climate, 20, 5164–5177. doi: 10.1175/JCLI4289.1
[84] Li, Y., X.-Q. Yang, and Q. Xie, 2010: Selective interaction between interannual variability of North Pacific subtropical high and ENSO cycle. Chinese J. Geophys., 53, 1543–1553. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.07.005
[85] Li, Z. Y., H. M. Xu, and W. J. Zhang, 2015: Asymmetric features for two types of ENSO. J. Meteor. Res., 29, 896–916. doi: 10.1007/s13351-015-5044-4
[86] Lian, T., and D. K. Chen, 2012: An evaluation of rotated EOF analysis and its application to tropical Pacific SST variability. J. Climate, 25, 5361–5373. doi: 10.1175/JCLI-D-11-00663.1
[87] Lian, T., D. K. Chen, Y. M. Tang, et al., 2014a: A theoretical investigation of the tropical Indo-Pacific tripole mode. Sci. China Earth Sci., 57, 174–188. doi: 10.1007/s11430-013-4762-7
[88] Lian, T., D. K. Chen, Y. M. Tang, et al., 2014b: Effects of westerly wind bursts on El Niño: A new perspective. Geophys. Res. Lett., 41, 3522–3527. doi: 10.1002/2014GL059989
[89] Lian, T., J. Ying, H.-L. Ren, et al., 2019: Effects of tropical cyclones on ENSO. J. Climate, 32, 6423–6443. doi: 10.1175/JCLI-D-18-0821.1
[90] Liang, J., X.-Q. Yang, and D.-Z. Sun, 2012: The effect of ENSO events on the tropical Pacific mean climate: Insights from an analytical model. J. Climate, 25, 7590–7606. doi: 10.1175/JCLI-D-11-00490.1
[91] Liang, J., X.-Q. Yang, and D.-Z. Sun, 2017: Factors determining the asymmetry of ENSO. J. Climate, 30, 6097–6106. doi: 10.1175/JCLI-D-16-0923.1
[92] Lin, R. P., F. Zheng, and X. Dong, 2018: ENSO frequency asymmetry and the Pacific decadal oscillation in observations and 19 CMIP5 models. Adv. Atmos. Sci., 35, 495–506. doi: 10.1007/s00376-017-7133-z
[93] Liu, F., J. Chai, G. Huang, et al., 2015: Modulation of decadal ENSO-like variation by effective solar radiation. Dyn. Atmos. Oceans, 72, 52–61. doi: 10.1016/j.dynatmoce.2015.10.003
[94] Liu, F., J. B. Li, B. Wang, et al., 2018: Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium. Climate Dyn., 50, 3799–3812. doi: 10.1007/s00382-017-3846-z
[95] Liu, Q. Y., and L. Fan, 2009: The leading mode of the tropical ocean–atmosphere coupling. J. Ocean Univ. China, 39, 815–821. (in Chinese) doi: 10.3969/j.issn.1672-5174.2009.05.001
[96] Liu, Y., and H.-L. Ren, 2017: Improving ENSO prediction in CFSv2 with an analogue-based correction method. Int. J. Climatol., 37, 5035–5046. doi: 10.1002/joc.5142
[97] Lu, B., and H.-L. Ren, 2016: Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs. Dyn. Atmos. Oceans, 76, 127–140. doi: 10.1016/j.dynatmoce.2016.10.005
[98] Lu, B., F.-F. Jin, and H.-L. Ren, 2018a: A coupled dynamic index for ENSO periodicity. J. Climate, 31, 2361–2376. doi: 10.1175/JCLI-D-17-0466.1
[99] Lu, B., H.-L. Ren, R. Eade, et al., 2018b: Indian Ocean SST modes and their impacts as simulated in BCC_CSM1.1(m) and HadGEM3. Adv. Atmos. Sci., 35, 1035–1048. doi: 10.1007/s00376-018-7279-3
[100] Lu, B., H.-L. Ren, A. A. Scaife, et al., 2018c: An extreme negative Indian Ocean Dipole event in 2016: Dynamics and predictability. Climate Dyn., 51, 89–100. doi: 10.1007/s00382-017-3908-2
[101] Lu, Q., Z. X. Ruan, D.-P. Wang, et al., 2017: Zonal transport from the western boundary and its role in warm water volume changes during ENSO. J. Phys. Oceanogr., 47, 211–225. doi: 10.1175/JPO-D-16-0112.1
[102] Luo, J.-J., S. Masson, S. Behera, et al., 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 4474–4497. doi: 10.1175/JCLI3526.1
[103] Luo, J.-J., S. Masson, S. K. Behera, et al., 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 84–93. doi: 10.1175/2007JCLI1412.1
[104] Luo, J.-J., R. C. Zhang, S. K. Behera, et al., 2010: Interaction between El Niño and extreme Indian Ocean Dipole. J. Climate, 23, 726–742. doi: 10.1175/2009JCLI3104.1
[105] Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18701–18706. doi: 10.1073/pnas.1210239109
[106] Luo, J.-J., C. X. Yuan, W. Sasaki, et al., 2016: Current status of intraseasonal–seasonal–interannual prediction of the Indo-Pacific climate. Indo-Pacific Climate Variability and Predictability, S. Behera, and T. Yamagata, Eds., The World Scientific Publisher, Singapore, 63–107, doi: 10.1142/9789814696623_0003.
[107] Luo, J.-J., G. Q. Liu, H. Hendon, et al., 2017: Inter-basin sources for two-year predictability of the multi-year La Niña event in 2010–2012. Sci. Rep., 7, 2276. doi: 10.1038/s41598-017-01479-9
[108] Ma, J., S.-P. Xie, and H. M. Xu, 2017: Contributions of the North Pacific meridional mode to ensemble spread of ENSO prediction. J. Climate, 30, 9167–9181. doi: 10.1175/JCLI-D-17-0182.1
[109] Meng, W., and G. X. Wu, 2000: Gearing between the Indo-monsoon circulation and the Pacific-Walker circulation and the ENSO. Part II: Numerical simulation. Chinese J. Atmos. Sci., 24, 15–25. (in Chinese) doi: 10.3878/j.issn.1006-9895.2000.01.02
[110] Meng, X. F., D. X. Wu, and X. P. Lin, 2004: Characteristics and mechanisms of transmission of oceanic anomaly signal related to ENSO cycles. J. Trop. Oceanogr., 23, 22–29. (in Chinese) doi: 10.3969/j.issn.1009-5470.2004.06.003
[111] Miao, J. H., and J. M. Liu, 1989: A theory on air–sea coupled instability of the onset and development of ENSO. Sci. China Ser. B, 10, 1112–1120. (in Chinese) doi: 10.1360/zb1989-19-10-1112
[112] Min, Q. Y., J. Z. Su, and R. H. Zhang, 2017: Impact of the South and North Pacific meridional modes on the El Niño–Southern Oscillation: Observational analysis and comparison. J. Climate, 30, 1705–1720. doi: 10.1175/JCLI-D-16-0063.1
[113] Mu, M. Q., and C. Y. Li, 2000: Interactions between subsurface ocean temperature anomalies in the western Pacific warm pool and ENSO cycle. Chinese J. Atmos. Sci., 24, 447–460. (in Chinese) doi: 10.3878/j.issn.1006-9895.2000.04.02
[114] Mu, M., and H.-L. Ren, 2017: Enlightenments from researches and predictions of 2014–2016 super El Niño event. Sci. China Earth Sci., 60, 1569–1571. doi: 10.1007/s11430-017-9094-5
[115] Mu, M., H. Xu, and W. S. Duan, 2007: A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak–Cane model. Geophys. Res. Lett., 34, L03709. doi: 10.1029/2006GL027412
[116] Nie, Y., H.-L. Ren, and Y. Zhang, 2019: The role of extratropical air–sea interaction in the autumn subseasonal variability of the North Atlantic Oscillation. J. Climate, 32, 7697–7712. doi: 10.1175/JCLI-D-19-0060.1
[117] Qian, W. H., and H. R. Hu, 2005: Signal propagations and linkages of subsurface temperature anomalies in the tropical Pacific and Indian Ocean. Prog. Nat. Sci., 15, 804–809. doi: 10.1080/10020070512331342950
[118] Qiao, F. L., W. D. Yu, and L. Y. Yuan, 2004: On the circuit and propagation of El Niño/La Niña signals. Acta Oceanol. Sinica, 26, 1–8. (in Chinese) doi: 10.3321/j.issn:0253-4193.2004.04.001
[119] Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704. doi: 10.1029/2010gl046031
[120] Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506–6523. doi: 10.1175/jcli-d-12-00601.1
[121] Ren, H.-L., F.-F. Jin, M. F. Stuecker, et al., 2013: ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteor. Soc. Japan, 91, 835–842. doi: 10.2151/jmsj.2013-608
[122] Ren, H.-L., Y. Liu, F.-F. Jin, et al., 2014: Application of the analogue-based correction of errors method in ENSO prediction. Atmos. Ocean. Sci. Lett., 7, 157–161. doi: 10.3878/j.issn.1674-2834.13.0080
[123] Ren, H.-L., F.-F. Jin, B. Tian, et al., 2016a: Distinct persistence barriers in two types of ENSO. Geophys. Res. Lett., 43, 10,973–10,979. doi: 10.1002/2016gl071015
[124] Ren, H.-L., J. Q. Zuo, F.-F. Jin, et al., 2016b: ENSO and annual cycle interaction: The combination mode representation in CMIP5 models. Climate Dyn., 46, 3753–3765. doi: 10.1007/s00382-015-2802-z
[125] Ren, H.-L., Y. Liu, J. Q. Zuo, et al., 2016c: The new generation of ENSO prediction system in Beijing Climate Center and its prediction for the 2014/2016 super El Niño event. Meteor. Mon., 42, 521–531. (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.05.001
[126] Ren, H.-L., F. F. Jin, L. C. Song, et al., 2017a: Prediction of primary climate variability modes at the Beijing Climate Center. J. Meteor. Res., 31, 204–223. doi: 10.1007/s13351-017-6097-3
[127] Ren, H.-L., R. Wang, P. M. Zhai, et al., 2017b: Upper-ocean dynamical features and prediction of the super El Niño in 2015/16: A comparison with the cases in 1982/83 and 1997/98. J. Meteor. Res., 31, 278–294. doi: 10.1007/s13351-017-6194-3
[128] Ren, H.-L., B. Lu, J. H. Wan, et al., 2018: Identification standard for ENSO events and its application to climate monitoring and prediction in China. J. Meteor. Res., 32, 923–936. doi: 10.1007/s13351-018-8078-6
[129] Ren, H.-L., A. A. Scaife, N. Dunstone, et al., 2019a: Seasonal predictability of winter ENSO types in operational dynamical model predictions. Climate Dyn., 52, 3869–3890. doi: 10.1007/s00382-018-4366-1
[130] Ren, H.-L., Y. J. Wu, Q. Bao, et al., 2019b: The China multi-model ensemble prediction system and its application to flood-season prediction in 2018. J. Meteor. Res., 33, 540–552. doi: 10.1007/s13351-019-8154-6
[131] Ren, H.-L., J. Q. Zuo, and Y. Deng, 2019c: Statistical predictability of Niño indices for two types of ENSO. Climate Dyn., 52, 5361–5382. doi: 10.1007/s00382-018-4453-3
[132] Rong, X. Y., and X.-Q. Yang, 2003: Sensitivity of ENSO characteristics in a coupled ocean–atmosphere GCM to change of climatological background state. Acta Meteor. Sinica, 61, 52–65. (in Chinese) doi: 10.11676/qxxb2003.006
[133] Rong, X. Y., R. H. Zhang, T. Li, et al., 2011: Upscale feedback of high-frequency winds to ENSO. Quart. J. Roy. Meteor. Soc., 137, 894–907. doi: 10.1002/qj.804
[134] Song, J. X., 1987: Relationship between the zonal wind anomalies over the western tropical Atlantic and the occurrence of ENSO. Acta Oceanol. Sinica, 9, 30–35. (in Chinese)
[135] Song, J. X., and Z. G. Wang, 1997: An important advance in El Niño prediction approach—the 1997–1998 El Niño is coming. Chinese Sci. Bull., 42, 2462–2463. (in Chinese) doi: 10.1360/csb1997-42-22-2462
[136] Su, J. Z., R. H. Zhang, T. Li, et al., 2010: Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605–617. doi: 10.1175/2009JCLI2894.1
[137] Su, J. Z., T. Li, and R. H. Zhang, 2014: The initiation and developing mechanisms of central Pacific El Niños. J. Climate, 27, 4473–4485. doi: 10.1175/JCLI-D-13-00640.1
[138] Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283–3287. doi: 10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2
[139] Sullivan, A., J.-J. Luo, A. C. Hirst, et al., 2016: Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. Sci. Rep., 6, 38540. doi: 10.1038/srep38540
[140] Tan, Y. K., R. H. Zhang, J. H. He, et al., 2004: Relationship of the interannual variations of sea surface temperature in tropical Indian Ocean to ENSO. Acta Meteor. Sinica, 62, 831–840. (in Chinese) doi: 10.3321/j.issn:0577-6619.2004.06.012
[141] Tang, Y. M., and S. H. Liu, 1994: The temporal and spatial structure analyses of Pacific SSTA accompanying with two kinds of El Niño events. J. Trop. Meteor., 10, 130–139. (in Chinese) doi: 10.16032/j.issn.1004-4965.1994.02.005
[142] Tang, Y. M., R.-H. Zhang, T. Liu, et al., 2018: Progress in ENSO prediction and predictability study. Natl. Sci. Rev., 5, 826–839. doi: 10.1093/nsr/nwy105
[143] Tao, W. C., G. Huang, K. M. Hu, et al., 2015: Interdecadal modulation of ENSO teleconnections to the Indian Ocean Basin Mode and their relationship under global warming in CMIP5 models. Int. J. Climatol., 35, 391–407. doi: 10.1002/joc.3987
[144] Tian, B., H.-L. Ren, F.-F. Jin, et al., 2019: Diagnosing the representation and causes of the ENSO persistence barrier in CMIP5 simulations. Climate Dyn., 53, 2147–2160. doi: 10.1007/s00382-019-04810-4
[145] Wang, C. Z., 2018: A review of ENSO theories. Natl. Sci. Rev., 5, 813–825. doi: 10.1093/nsr/nwy104
[146] Wang, C. Z., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 5119–5136. doi: 10.1007/s00382-019-04930-x
[147] Wang, C. Z., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26, 1322–1338. doi: 10.1175/JCLI-D-12-00107.1
[148] Wang, D. X., Y. Liu, Q. Y. Liu, et al., 2003: The relationship between Indian Ocean and western Pacific upper marine during El Niño in 1997–1998. Prog. Nat. Sci., 13, 957–963. (in Chinese) doi: 10.3321/j.issn:1002-008X.2003.09.011
[149] Wang, H. N., J. N. Chen, and Q. Y. Liu, 2012: Propagation and variability of subsurface oceanic signal during ENSO cycle. J. Trop. Oceanogr., 31, 1–6. (in Chinese) doi: 10.3969/j.issn.1009-5470.2012.02.001
[150] Wang, L., J.-Y. Yu, and H. Paek, 2017a: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887. doi: 10.1038/ncomms14887
[151] Wang, L., H.-L. Ren, Q. L. Chen, et al., 2017b: Statistical correction of ENSO prediction in BCC_CSM1.1m based on stepwise pattern projection method. Meteor. Mon., 43, 294–304. (in Chinese) doi: 10.7519/j.issn.1000-0526.2017.03.005
[152] Wang, L.-C., and C.-R. Wu, 2013: Contrasting the flow patterns in the equatorial Pacific between two types of El Niño. Atmos.-Ocean, 51, 60–74. doi: 10.1080/07055900.2012.744294
[153] Wang, M., Z. Y. Guan, and D. C. Jin, 2018: Two new sea surface temperature anomalies indices for capturing the eastern and central equatorial Pacific type El Niño–Southern Oscillation events during boreal summer. Int. J. Climatol., 38, 4066–4076. doi: 10.1002/joc.5552
[154] Wang, Q. Y., J. P. Li, F.-F. Jin, et al., 2019: Tropical cyclones act to intensify El Niño. Nat. Commun., 10, 3793. doi: 10.1038/s41467-019-11720-w
[155] Wang, R., and H.-L. Ren, 2017: The linkage between two ENSO types/modes and the interdecadal changes of ENSO around the year 2000. Atmos. Ocean. Sci. Lett., 10, 168–174. doi: 10.1080/16742834.2016.1258952
[156] Wang, T., D. Guo, Y. Q. Gao, et al., 2018: Modulation of ENSO evolution by strong tropical volcanic eruptions. Climate Dyn., 51, 2433–2453. doi: 10.1007/s00382-017-4021-2
[157] Wang, X., D. X. Wang, and W. Zhou, 2009: Decadal variability of twentieth-century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models. Geophys. Res. Lett., 36, L11701. doi: 10.1029/2009GL037929
[158] Wang, X., C. Z. Wang, W. Zhou, et al., 2011: Teleconnected influence of North Atlantic sea surface temperature on the El Niño onset. Climate Dyn., 37, 663–676. doi: 10.1007/s00382-010-0833-z
[159] Weng, H. Y., K. Ashok, S. K. Behera, et al., 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129. doi: 10.1007/s00382-007-0234-0
[160] Wu, B., T. J. Zhou, and T. Li, 2009: Contrast of rainfall–SST relationships in the western North Pacific between the ENSO-developing and ENSO-decaying summers. J. Climate, 22, 4398–4405. doi: 10.1175/2009JCLI2648.1
[161] Wu, G. X., and W. Meng, 1998: Gearing between the Indo-Monsoon circulation and the Pacific-Walker circulation and the ENSO. Part I: Data analyses. Scientia Atmos. Sinica, 22, 470–480. (in Chinese) doi: 10.3878/j.issn.1006-9895.1998.04.09
[162] Wu, G. X., F. Y. Sun, J. F. Wang, et al., 1995: Neighbourhood response of rainfall to tropical sea surface temperature anomalies. Part II: Data analysis. Chinese J. Atmos. Sci., 19, 663–676. (in Chinese) doi: 10.3878/j.issn.1006-9895.1995.06.03
[163] Wu, L. X., F. He, Z. Y. Liu, et al., 2007: Atmospheric teleconnections of tropical Atlantic variability: Interhemispheric, tropical–extratropical, and cross-basin interactions. J. Climate, 20, 856–870. doi: 10.1175/JCLI4019.1
[164] Wu, Z. W., and H. Lin, 2012: Interdecadal variability of the ENSO–North Atlantic Oscillation connection in boreal summer. Quart. J. Roy. Meteor. Soc., 138, 1668–1675. doi: 10.1002/qj.1889
[165] Wu, Z. W., S. J. Chen, J. H. He, et al., 2014: Quantifications of the two “flavours” of El Niño using upper-ocean heat content. Atmos.-Ocean, 52, 351–362. doi: 10.1080/07055900.2014.942593
[166] Wyrtki, K., 1975: El Niño—The dynamic response of the equato-rial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572–584. doi: 10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2
[167] Xie, F., J. P. Li, W. S. Tian, et al., 2016: A connection from Arctic stratospheric ozone to El Niño–Southern Oscillation. Environ. Res. Lett., 11, 124026. doi: 10.1088/1748-9326/11/12/124026
[168] Xie, R. H., and Y. X. Yang, 2014: Revisiting the latitude fluctuations of the eastern Pacific ITCZ during the central Pacific El Niño. Geophys. Res. Lett., 41, 7770–7776. doi: 10.1002/2014GL061857
[169] Xie, R. H., F. Huang, and H.-L. Ren, 2013: Subtropical air–sea interaction and development of central Pacific El Niño. J. Ocean Univ. China, 12, 260–271. doi: 10.1007/s11802-013-2143-7
[170] Xie, R. H., F. Huang, F.-F. Jin, et al., 2015: The impact of basic state on quasi-biennial periodicity of central Pacific ENSO over the past decade. Theor. Appl. Climatol., 120, 55–67. doi: 10.1007/s00704-014-1150-y
[171] Xie, R. H., and F.-F. Jin, 2018: Two leading ENSO modes and El Niño types in the Zebiak–Cane model. J. Climate, 31, 1943–1962. doi: 10.1175/JCLI-D-17-0469.1
[172] Xie, S.-P., Q. H. Peng, Y. Kamae, et al., 2018: Eastern Pacific ITCZ dipole and ENSO diversity. J. Climate, 31, 4449–4462. doi: 10.1175/JCLI-D-17-0905.1
[173] Xu, K., C. W. Zhu, and J. H. He, 2012: Linkage between the dominant modes in Pacific subsurface ocean temperature and the two type ENSO events. Chinese Sci. Bull., 57, 3491–3496. doi: 10.1007/s11434-012-5173-4
[174] Xu, K., R. X. Huang, W. Q. Wang, et al., 2017: Thermocline fluctuations in the equatorial Pacific related to the two types of El Niño events. J. Climate, 30, 6611–6627. doi: 10.1175/JCLI-D-16-0291.1
[175] Xu, K., W. Q. Wang, B. Q. Liu, et al., 2019: Weakening of the El Niño amplitude since the late 1990s and its link to decadal change in the North Pacific climate. Int. J. Climatol., 39, 4125–4138. doi: 10.1002/joc.6063
[176] Yan, B. L., and R. H. Zhang, 2002: A numerical test of the effects of wind anomaly over the equatorial western Pacific on ENSO cycle. Chinese J. Atmos. Sci., 26, 315–329. (in Chinese) doi: 10.3878/j.issn.1006-9895.2002.03.03
[177] Yan, B. L., R. L. Huang, and R. H. Zhang, 2001: Dynamical role of zonal wind stress over the tropical Pacific in the occurring and vanishing of El Niño. Part II: Analyses of modeling results. Chinese J. Atmos. Sci., 25, 160–172. (in Chinese) doi: 10.3878/j.issn.1006-9895.2001.02.02
[178] Yang, S., and X. W. Jiang, 2014: Prediction of eastern and central Pacific ENSO events and their impacts on East Asian climate by the NCEP climate forecast system. J. Climate, 27, 4451–4472. doi: 10.1175/JCLI-D-13-00471.1
[179] Yang, S., K. Q. Deng, and W. S. Duan, 2018: Selective interaction between monsoon and ENSO: Effects of annual cycle and spring predictability barrier. Chinese J. Atmos. Sci., 42, 570–589. (in Chinese) doi: 10.3878/j.issn.1006-9895.1712.17241
[180] Yang, X. Q., Q. Xie, and S. S. Huang, 1995: A study on dynami-cal features of air–sea coupling waves in the tropics. Acta Oceanol. Sinica, 17, 27–37. (in Chinese)
[181] Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pacific J. Atmos. Sci., 50, 69–81. doi: 10.1007/s13143-014-0028-3
[182] Yu, W. D., and F. L. Qiao, 2003: Analysis of the heat content variability of the tropical Pacific upper ocean during ENSO events. Adv. Mar. Sci., 21, 446–453. (in Chinese) doi: 10.3969/j.issn.1671-6647.2003.04.012
[183] Yu, W. D., B. Q. Xiang, L. Liu, et al., 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706. doi: 10.1029/2005GL024327
[184] Yuan, Y., and C. Y. Li, 2008: Decadal variability of the IOD–ENSO relationship. Chinese Sci. Bull., 53, 1745–1752. doi: 10.1007/s11434-008-0196-6
[185] Zebiak, S. E., and M. A. Cane, 1987: A model of El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278. doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2
[186] Zhang, C., J.-J. Luo, and S. L. Li, 2019: Impacts of tropical In-dian and Atlantic Ocean warming on the occurrence of the 2017/2018 La Niña. Geophys. Res. Lett., 46, 3435–3445. doi: 10.1029/2019GL082280
[187] Zhang, Q., and Y. H. Ding, 2001: Decadal climate change and ENSO cycle. Acta Meteor. Sinica, 59, 157–172. (in Chinese) doi: 10.3321/j.issn:0577-6619.2001.02.003
[188] Zhang, R. H., 1995: Coupled waves in simple tropical air–sea interaction models and their instabilities (I). Scientia Atmos. Sinica, 19, 455–464. (in Chinese) doi: 10.3878/j.issn.1006-9895.1995.04.08
[189] Zhang, R.-H., 2015a: An ocean-biology-induced negative feedback on ENSO as derived from a hybrid coupled model of the tropical Pacific. J. Geophys. Res. Oceans, 120, 8052–8076. doi: 10.1002/2015JC011305
[190] Zhang, R.-H., 2015b: Structure and effect of ocean biology-induced heating (OBH) in the tropical Pacific, diagnosed from a hybrid coupled model simulation. Climate Dyn., 44, 695–715. doi: 10.1007/s00382-014-2231-4
[191] Zhang, R.-H., 2015c: A hybrid coupled model for the Pacific ocean–atmosphere system. Part I: Description and basic performance. Adv. Atmos. Sci., 32, 301–318. doi: 10.1007/s00376-014-3266-5
[192] Zhang, R. H., and J. P. Chao, 1992: Numerical experiments on the tropical air–sea interaction waves. Acta Meteor. Sinica, 6, 148–158.
[193] Zhang, R. H., and J. P. Chao, 1993: Unstable tropical air–sea interaction waves and their physical mechanisms. Adv. Atmos. Sci., 10, 61–70. doi: 10.1007/BF02656954
[194] Zhang, R. H., and J. P. Chao, 1994: An improvement on the tropi-cal unstable air–sea interaction model. Acta Meteor. Sinica, 52, 350–358. (in Chinese) doi: 10.11676/qxxb1994.043
[195] Zhang, R. H., and R. H. Huang, 1998: Dynamical roles of zonal wind stress over the tropical Pacific on the occurring and vanishing of El Niño. Part I: Diagnostic and theoretical analyses. Scientia Atmos. Sinica, 22, 587–599. (in Chinese) doi: 10.3878/j.issn.1006-9895.1998.04.19
[196] Zhang, R.-H., A. J. Busalacchi, X. J. Wang, et al., 2009: Role of ocean biology-induced climate feedback in the modulation of El Niño–Southern Oscillation. Geophys. Res. Lett., 36, L03608. doi: 10.1029/2008GL036568
[197] Zhang, R.-H., D. K. Chen, and G. H. Wang, 2011: Using satellite ocean color data to derive an empirical model for the penetration depth of solar radiation (H p) in the tropical Pacific Ocean. J. Atmos. Ocean Technol., 28, 944–965. doi: 10.1175/2011JTECHO797.1
[198] Zhang, R.-H., C. Gao, X. B. Kang, et al., 2015: ENSO modulations due to interannual variability of freshwater forcing and ocean biology-induced heating in the tropical Pacific. Sci. Rep., 5, 18506. doi: 10.1038/srep18506
[199] Zhang, W. J., J. P. Li, and F.-F. Jin, 2009: Spatial and temporal features of ENSO meridional scales. Geophys. Res. Lett., 36, L15605. doi: 10.1029/2009GL038672
[200] Zhang, W. J., F.-F. Jin, H.-L. Ren, et al., 2012: Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn. J. Meteor. Soc. Japan, 90, 535–552. doi: 10.2151/jmsj.2012-407
[201] Zhang, W. J., H. Y. Li, F.-F. Jin, et al., 2015a: The annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO zonal structure. J. Climate, 28, 5795–5812. doi: 10.1175/JCLI-D-14-00724.1
[202] Zhang, W. J., Y. L. Wang, F.-F. Jin, et al., 2015b: Impact of different El Niño types on the El Niño/IOD relationship. Geophys. Res. Lett., 42, 8570–8576. doi: 10.1002/2015GL065703
[203] Zhao, Y. P., Y. L. Chen, F. Wang, et al., 2007: Mixed-layer water oscillations in tropical Pacific for ENSO cycle. Sci. China Ser. D Earth Sci., 50, 1892–1908. doi: 10.1007/s11430-007-0098-5
[204] Zheng, F., and J. Zhu, 2010: Coupled assimilation for an intermediate coupled ENSO prediction model. Ocean Dyn., 60, 1061–1073. doi: 10.1007/s10236-010-0307-1
[205] Zheng, F., and R.-H. Zhang, 2012: Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data. Dyn. Atmos. Oceans, 57, 45–57. doi: 10.1016/j.dynatmoce.2012.06.002
[206] Zheng, F., and R.-H. Zhang, 2015: Interannually varying salinity effects on ENSO in the tropical Pacific: A diagnostic analysis from Argo. Ocean Dyn., 65, 691–705. doi: 10.1007/s10236-015-0829-7
[207] Zheng, F., and J. Zhu, 2015: Roles of initial ocean surface and subsurface states on successfully predicting 2006–2007 El Niño with an intermediate coupled model. Ocean Sci., 11, 187–194. doi: 10.5194/os-11-187-2015
[208] Zheng, F., and J. Zhu, 2016: Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Climate Dyn., 47, 3901–3915. doi: 10.1007/s00382-016-3048-0
[209] Zheng, F., J. Zhu, R.-H. Zhang, et al., 2006: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33, L19604. doi: 10.1029/2006GL026994
[210] Zheng, F., J. Zhu, and R.-H. Zhang, 2007: Impact of altimetry data on ENSO ensemble initializations and predictions. Geophys. Res. Lett., 34, L13611. doi: 10.1029/2007GL030451
[211] Zheng, F., X.-H. Fang, J.-Y. Yu, et al., 2014: Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41, 7651–7657. doi: 10.1002/2014GL062125
[212] Zheng, F., J. Zhu, R.-H. Zhang, et al., 2016: Successful prediction for the super El Niño event in 2015. Bull. Chinese Acad. Sci., 31, 251–257. (in Chinese) doi: 10.16418/j.issn.1000-3045.2016.02.012
[213] Zheng, F., J. P. Li, and R. Q. Ding, 2017: Influence of the preceding austral summer Southern Hemisphere annular mode on the amplitude of ENSO decay. Adv. Atmos. Sci., 34, 1358–1379. doi: 10.1007/s00376-017-6339-4
[214] Zheng, X.-T., S.-P. Xie, L.-H. Lyu, et al., 2016: Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. J. Climate, 29, 7265–7279. doi: 10.1175/JCLI-D-16-0039.1
[215] Zhong, W. X., X.-T. Zheng, and W. J. Cai, 2017: A decadal tropi-cal Pacific condition unfavorable to central Pacific El Niño. Geophys. Res. Lett., 44, 7919–7926. doi: 10.1002/2017GL073846
[216] Zhou, G.-Q., and C. Y. Li, 1999: Simulation on the relation between the subsurface temperature anomaly in western Pacific and ENSO by using CGCM. Climatic Environ. Res., 4, 346–352. (in Chinese)
[217] Zhou, G.-Q., and Q.-C. Zeng, 2001: Predictions of ENSO with a coupled atmosphere–ocean general circulation model. Adv. Atmos. Sci., 18, 587–603. doi: 10.1007/s00376-001-0047-8
[218] Zhou, G.-Q., X. Li, and Q.-C. Zeng, 1998: A coupled ocean–atmosphere general circulation model for ENSO prediction and 1997/1998 ENSO forecast. Climatic Environ. Res., 3, 349–357. (in Chinese) doi: 10.3878/j.issn.1006-9585.1998.04.07
[219] Zhou, Q., and W. Chen, 2012: Influence of the 11-year solar cycle on the evolution of ENSO-related SST anomalies and rainfall anomalies in East Asia. Chinese J. Atmos. Sci., 36, 851–862. (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.11162
[220] Zhou, Z.-Q., S.-P. Xie, X.-T. Zheng, et al., 2014: Global warming-induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 9050–9064. doi: 10.1175/JCLI-D-14-00254.1
[221] Zhu, B. Z., M. X. Luo, and R. H. Huang, 1981: Dynamic instability of large-scale sea surface temperature (SST) disturbance and the formation of sea surface temperature anomaly (SSTA). Scientia China, 25, 68–78.