[1] |
Apte, J. S., J. D. Marshall, A. J. Cohen, et al., 2015: Addressing global mortality from ambient PM2.5. Environ. Sci. Technol., 49, 8057–8066. doi: 10.1021/acs.est.5b01236 |
[2] |
Aryal, Y. N., and S. Evans, 2021: Global dust variability explained by drought sensitivity in CMIP6 models. J. Geophys. Res. Earth Surf., 126, e2021JF006073. doi: 10.1029/2021JF006073 |
[3] |
Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502–505. doi: 10.1126/science.1204994 |
[4] |
Bond, T. C., S. J. Doherty, D. W. Fahey, et al., 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 5380–5552. doi: 10.1002/jgrd.50171 |
[5] |
Boucher, O., S. Denvil, G. Levavasseur, et al., 2020a: IPSL IPSL-CM5A2-INCA model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.13661. Accessed on 12 May 2022. |
[6] |
Boucher, O., S. Denvil, G. Levavasseur, et al., 2020b: IPSL IPSL-CM5A2-INCA model output prepared for CMIP6 ScenarioMIP ssp370. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.15714. Acces-sed on 12May 2022. |
[7] |
Buchard, V., A. M. da Silva, C. A. Randles, et al., 2016: Evaluation of the surface PM2.5 in version 1 of the NASA MERRA aerosol reanalysis over the United States. Atmos. Environ., 125, 100–111. doi: 10.1016/j.atmosenv.2015.11.004 |
[8] |
Buchard, V., C. A. Randles, A. M. da Silva, et al., 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30, 6851–6872. doi: 10.1175/JCLI-D-16-0613.1 |
[9] |
Charlson, R. J., S. E. Schwartz, J. M. Hales, et al., 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430. doi: 10.1126/science.255.5043.423 |
[10] |
Coakley, J. A. Jr., R. D. Cess, and F. B. Yurevich, 1983: The effect of tropospheric aerosols on the Earth’s radiation budget: A parameterization for climate models. J. Atmos. Sci., 40, 116–138. doi: 10.1175/1520-0469(1983)040<0116:TEOTAO>2.0.CO;2 |
[11] |
Cohen, D. D., and A. J. Atanacio, 2015: The IAEA/RCA Fine and Coarse Particle Ambient Air Database. ANSTO Report/E-784, 1–35. |
[12] |
Collins, W. J., J. F. Lamarque, M. Schulz, et al., 2017: AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev., 10, 585–607. doi: 10.5194/gmd-10-585-2017 |
[13] |
Danabasoglu, G., 2019a: NCAR CESM2-WACCM model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.10071. Accessed on 12 May 2022. |
[14] |
Danabasoglu, G., 2019b: NCAR CESM2-WACCM model output prepared for CMIP6 ScenarioMIP ssp370. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.10102. Accessed on 12 May 2022. |
[15] |
Danabasoglu, G., J. F. Lamarque, J. Bacmeister, et al., 2020: The community earth system model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916. doi: 10.1029/2019MS001916 |
[16] |
Dunne, J. P., L. W. Horowitz, A. J. Adcroft, et al., 2020: The GFDL earth system model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst., 12, e2019MS002015. doi: 10.1029/2019MS002015 |
[17] |
EC-Earth Consortium (EC-Earth), 2020a: EC-Earth-consortium EC-Earth3-AerChem model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.4701. Acces-sed on 12May 2022. |
[18] |
EC-Earth Consortium (EC-Earth), 2020b: EC-Earth-Consortium EC-Earth3-AerChem Model Output Prepared for CMIP6 ScenarioMIP ssp370. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.4885. Accessed on 12May 2022. |
[19] |
Eyring, V., S. Bony, G. A. Meehl, et al., 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958. doi: 10.5194/gmd-9-1937-2016 |
[20] |
Good, P., A. Sellar, Y. M. Tang, et al., 2019: MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp370. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.6347. Accessed on 12May 2022. |
[21] |
Guo, J. P., H. Liu, Z. Q. Li, et al., 2018: Aerosol-induced changes in the vertical structure of precipitation: A perspective of TRMM precipitation radar. Atmos. Chem. Phys., 18, 13,329–13,343. doi: 10.5194/acp-18-13329-2018 |
[22] |
Hajima, T., M. Abe, O. Arakawa, et al., 2019: MIROC MIROC-ES2L model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.5602. Accessed on 12 May 2022. |
[23] |
Hajima, T., M. Watanabe, A. Yamamoto, et al., 2020: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev., 13, 2197–2244. doi: 10.5194/gmd-13-2197-2020 |
[24] |
Haywood, J. M., N. Bellouin, A. Jones, et al., 2011: The roles of aerosol, water vapor and cloud in future global dimming/brightening. J. Geophys. Res. Atmos., 116, D20203. doi: 10.1029/2011JD016000 |
[25] |
Hoesly, R. M., S. J. Smith, L. Y. Feng, et al., 2018: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev., 11, 369–408. doi: 10.5194/gmd-11-369-2018 |
[26] |
Horowitz, L. W., V. Naik, F. Paulot, et al., 2020: The GFDL global atmospheric chemistry–climate model AM4.1: Model description and simulation characteristics. J. Adv. Model. Earth Syst., 12, e2019MS002032. doi: 10.1029/2019MS002032 |
[27] |
Huijnen, V., J. Williams, M. van Weele, et al., 2010: The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0. Geosci. Model Dev., 3, 445–473. doi: 10.5194/gmd-3-445-2010 |
[28] |
Hwang, Y. T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 2845–2850. doi: 10.1002/grl.50502 |
[29] |
Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697. doi: 10.1038/35055518 |
[30] |
John, J. G., C. Blanton, C. McHugh, et al., 2018: NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 ScenarioMIP ssp370. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.8691. Acces-sed on 12 May 2022. |
[31] |
Kirkevåg, A., A. Grini, D. Olivié, et al., 2018: A production-tagged aerosol module for earth system models, OsloAero5.3-extensions and updates for CAM5.3-Oslo. Geosci. Model Dev., 11, 3945–3982. doi: 10.5194/gmd-11-3945-2018 |
[32] |
Krasting, J. P., J. G. John, C. Blanton, et al., 2018: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.8597. Accessed on 12 May 2022. |
[33] |
Krol, M., S. Houweling, B. Bregman, et al., 2005: The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5, 417–432. doi: 10.5194/acp-5-417-2005 |
[34] |
Lamarque, J. F., D. T. Shindell, B. Josse, et al., 2013: The atmospheric chemistry and climate model intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev., 6, 179–206. doi: 10.5194/gmd-6-179-2013 |
[35] |
Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855–864. doi: 10.1007/s00382-006-0114-z |
[36] |
Li, X., Y. W. Liu, M. H. Wang, et al., 2021: Assessment of the Coupled Model Intercomparison Project phase 6 (CMIP6) Model performance in simulating the spatial-temporal variation of aerosol optical depth over Eastern Central China. Atmos. Res., 261, 105,747. doi: 10.1016/j.atmosres.2021.105747 |
[37] |
Li, Z. Q., F. Niu, J. W. Fan, et al., 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888–894. doi: 10.1038/ngeo1313 |
[38] |
Li, Z. Q., J. P. Guo, A. J. Ding, et al., 2017: Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev., 4, 810–833. doi: 10.1093/nsr/nwx117 |
[39] |
Lim, S. S., T. Vos, A. D. Flaxman, et al., 2012: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 2224–2260. doi: 10.1016/S0140-6736(12)61766-8 |
[40] |
Liu, H. B., R. J. Yan, and J. Yang, 2021: Credibility and statistical characteristics of CAMSRA and MERRA-2 AOD reanalysis products over the Sichuan Basin during 2003–2018. Atmos. Environ., 244, 117980. doi: 10.1016/j.atmosenv.2020.117980 |
[41] |
Liu, R. J., H. Liao, W. Y. Chang, et al., 2017: Impact of climate change on aerosol concentrations in eastern China based on Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) datasets. Chinese J. Atmos. Sci., 41, 739–751. (in Chinese) doi: 10.3878/j.issn.1006-9895.1612.16218 |
[42] |
Liu, X., P. L. Ma, H. Wang, et al., 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505–522. doi: 10.5194/gmd-9-505-2016 |
[43] |
Menon, S., J. Hansen, L. Nazarenko, et al., 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253. doi: 10.1126/science.1075159 |
[44] |
Mulcahy, J. P., C. Johnson, C. G. Jones, et al., 2020: Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations. Geosci. Model Dev., 13, 6383–6423. doi: 10.5194/gmd-13-6383-2020 |
[45] |
Neubauer, D., S. Ferrachat, D. C. Siegenthaler-Le, et al., 2019a: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.5016. Accessed on 12 May 2022. |
[46] |
Neubauer, D., S. Ferrachat, D. C. Siegenthaler-Le, et al., 2019b: HAMMOZ-Consortium MPI-ESM1.2-HAM model output prepared for CMIP6 AerChemMIP. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.1621. Accessed on 12 May 2022. |
[47] |
Oshima, N., S. Yukimoto, M. Deushi, et al., 2020: Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0. Prog. Earth Planet. Sci., 7, 38. doi: 10.1186/s40645-020-00348-w |
[48] |
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, et al., 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124. doi: 10.1126/science.1064034 |
[49] |
Randles, C. A., A. M. da Silva, V. Buchard, et al., 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 6823–6850. doi: 10.1175/JCLI-D-16-0609.1 |
[50] |
Seland, Ø., M. Bentsen, D. J. L. Olivié, et al., 2019a: NCC NorESM2-LM model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.8036. Accessed on 12 May 2022. |
[51] |
Seland, Ø., M. Bentsen, D. J. L. Olivié, et al., 2019b: NCC NorESM2-LM model output prepared for CMIP6 ScenarioMIP ssp370. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.8268. Acces-sed on 12May 2022. |
[52] |
Seland, Ø., M. Bentsen, D. Olivié, et al., 2020: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev., 13, 6165–6200. doi: 10.5194/gmd-13-6165-2020 |
[53] |
Sellar, A. A., C. G. Jones, J. P. Mulcahy, et al., 2019: UKESM1: Description and evaluation of the U.K. Earth System Model. J. Adv. Model. Earth Syst., 11, 4513–4558. doi: 10.1029/2019MS001739 |
[54] |
Sepulchre, P., A. Caubel, J. B. Ladant, et al., 2020: IPSL-CM5A2—an Earth system model designed for multi-millennial climate simulations. Geosci. Model Dev., 13, 3011–3053. doi: 10.5194/gmd-13-3011-2020 |
[55] |
Shi, Y. S., T. Matsunaga, Y. Yamaguchi, et al., 2018: Long-term trends and spatial patterns of satellite-retrieved PM2.5 concentrations in South and Southeast Asia from 1999 to 2014. Sci. Total Environ., 615, 177–186. doi: 10.1016/j.scitotenv.2017.09.241 |
[56] |
Silva, R. A., J. J. West, Y. Q. Zhang, et al., 2013: Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ. Res. Lett., 8, 034005. doi: 10.1088/1748-9326/8/3/034005 |
[57] |
Singh, N., V. Murari, M. Kumar, et al., 2017: Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model. Environ. Pollut., 223, 121–136. doi: 10.1016/j.envpol.2016.12.071 |
[58] |
Sweerts, B., S. Pfenninger, S. Yang, et al., 2019: Estimation of losses in solar energy production from air pollution in China since 1960 using surface radiation data. Nat. Energy, 4, 657–663. doi: 10.1038/s41560-019-0412-4 |
[59] |
Szopa, S., Y. Balkanski, M. Schulz, et al., 2013: Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Climate Dyn., 40, 2223–2250. doi: 10.1007/s00382-012-1408-y |
[60] |
Tachiiri, K., M. Abe, T. Hajima, et al., 2019: MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP ssp370. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.5751. Accessed on 12May 2022. |
[61] |
Takemura, T., H. Okamoto, Y. Maruyama, et al., 2000: Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res. Atmos., 105, 17,853–17,873. doi: 10.1029/2000JD900265 |
[62] |
Takemura, T., T. Nozawa, S. Emori, et al., 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res. Atmos., 110, D02202. doi: 10.1029/2004JD005029 |
[63] |
Takemura, T., M. Egashira, K. Matsuzawa, et al., 2009: A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos. Chem. Phys., 9, 3061–3073. doi: 10.5194/acp-9-3061-2009 |
[64] |
Tang, Y. M., S. Rumbold, R. Ellis, et al., 2019: MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.6113. Accessed on 12May 2022. |
[65] |
Tegen, I., D. Neubauer, S. Ferrachat, et al., 2019: The global aerosol–climate model ECHAM6.3–HAM2.3—Part 1: Aerosol evaluation. Geosci. Model Dev., 12, 1643–1677. doi: 10.5194/gmd-12-1643-2019 |
[66] |
Textor, C., M. Schulz, S. Guibert, et al., 2007: The effect of harmonized emissions on aerosol properties in global models—An AeroCom experiment. Atmos. Chem. Phys., 7, 4489–4501. doi: 10.5194/acp-7-4489-2007 |
[67] |
Tosca, M. G., J. T. Randerson, C. S. Zender, et al., 2010: Do biomass burning aerosols intensify drought in equatorial Asia during El Niño? Atmos. Chem. Phys., 10, 3515–3528. doi: 10.5194/acp-10-3515-2010 |
[68] |
Turnock, S. T., R. J. Allen, M. Andrews, et al., 2020: Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys., 20, 14,547–14,579. doi: 10.5194/acp-20-14547-2020 |
[69] |
Ukhov, A., S. Mostamandi, A. da Silva, et al., 2020: Assessment of natural and anthropogenic aerosol air pollution in the Middle East using MERRA-2, CAMS data assimilation products, and high-resolution WRF-Chem model simulations. Atmos. Chem. Phys., 20, 9281–9310. doi: 10.5194/acp-20-9281-2020 |
[70] |
van Noije, T., T. Bergman, P. Le Sager, et al., 2021: EC-Earth3-AerChem: A global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6. Geosci. Model Dev., 14, 5637–5668. doi: 10.5194/gmd-14-5637-2021 |
[71] |
Wang, M. X., and R. J. Zhang, 2001: Frontier of atmospheric aerosols researches. Climatic Environ. Res., 6, 119–124. (in Chinese) doi: 10.3969/j.issn.1006-9585.2001.01.014 |
[72] |
Wang, Y., Q. Wan, W. Meng, et al., 2011: Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmos. Chem. Phys., 11, 12,421–12,436. doi: 10.5194/acp-11-12421-2011 |
[73] |
Wang, Y., A. Khalizov, M. Levy, et al., 2013: New Directions: Light absorbing aerosols and their atmospheric impacts. Atmos. Environ., 81, 713–715. doi: 10.1016/j.atmosenv.2013.09.034 |
[74] |
Wei, J., Z. Q. Li, M. Cribb, et al., 2020: Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees. Atmos. Chem. Phys., 20, 3273–3289. doi: 10.5194/acp-20-3273-2020 |
[75] |
Wei, Y., X. S. Chen, H. S. Chen, et al., 2019: IAP-AACM v1.0: A global to regional evaluation of the atmospheric chemistry model in CAS-ESM. Atmos. Chem. Phys., 19, 8269–8296. doi: 10.5194/acp-19-8269-2019 |
[76] |
Wilcox, L. J., Z. Liu, B. H. Samset, et al., 2020: Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions. Atmos. Chem. Phys., 20, 11,955–11,977. doi: 10.5194/acp-20-11955-2020 |
[77] |
Witek, M. L., P. J. Flatau, P. K. Quinn, et al., 2007: Global sea-salt modeling: Results and validation against multicampaign shipboard measurements. J. Geophys. Res. Atmos., 112, D08215. doi: 10.1029/2006JD007779 |
[78] |
Wu, G. X., Z. Q. Li, C. B. Fu, et al., 2016: Advances in studying interactions between aerosols and monsoon in China. Sci. China Earth Sci., 59, 1–16. doi: 10.1007/s11430-015-5198-z |
[79] |
Wu, J., Y. Xu, and B. T. Zhou, 2016: The evaluation of surface PM2.5 concentration over China based on ACCMIP models. Climate Change Res., 12, 268–275. (in Chinese) doi: 10.12006/j.issn.1673-1719.2015.188 |
[80] |
Wu, T. W., F. Zhang, J. Zhang, et al., 2020: Beijing Climate Center Earth System Model version 1 (BCC-ESM1): Model description and evaluation of aerosol simulations. Geosci. Model Dev., 13, 977–1005. doi: 10.5194/gmd-13-977-2020 |
[81] |
Yan, X., Z. Zang, N. N. Luo, et al., 2020: New interpretable deep learning model to monitor real-time PM2.5 concentrations from satellite data. Environ. Int., 144, 106,060. doi: 10.1016/j.envint.2020.106060 |
[82] |
Yan, X., Z. Zang, C. Liang, et al., 2021: New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals. Environ. Pollut., 276, 116707. doi: 10.1016/j.envpol.2021.116707 |
[83] |
Yukimoto, S., H. Kawai, T. Koshiro, et al., 2019a: The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan, 97, 931–965. doi: 10.2151/jmsj.2019-051 |
[84] |
Yukimoto, S., T. Koshiro, H. Kawai, et al., 2019b: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.6842. Accessed on 12May 2022. |
[85] |
Yukimoto, S., T. Koshiro, H. Kawai, et al., 2019c: MRI MRI-ESM2.0 model output prepared for CMIP6 ScenarioMIP ssp370. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.6915. Accessed on 12May 2022. |
[86] |
Zhang, H., X. Y. Ma, S. Y. Zhao, et al., 2021: Advances in research on the ITCZ: Mean position, model bias, and anthropogenic aerosol influences. J. Meteor. Res., 35, 729–742. doi: 10.1007/s13351-021-0203-2 |
[87] |
Zhang, J., T. W. Wu, X. L. Shi, et al., 2018: BCC BCC-ESM1 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.2949. Accessed on 12May 2022. |
[88] |
Zhang, J., T. W. Wu, X. L. Shi, et al., 2019: BCC BCC-ESM1 model output prepared for CMIP6 AerChemMIP ssp370. Earth System Grid Federation. Available online at https://doi.org/10.22033/ESGF/CMIP6.3036. Accessed on 12May 2022. |
[89] |
Zhang, R. Y., G. H. Li, J. W. Fan, et al., 2007: Intensification of Pacific storm track linked to Asian pollution. Proc. Natl. Acad. Sci. USA, 104, 5295–5299. doi: 10.1073/pnas.0700618104 |
[90] |
Zhang, Y., Y. N. Li, J. P. Guo, et al., 2019: The climatology and trend of black carbon in China from 12-year ground observations. Climate Dyn., 53, 5881–5892. doi: 10.1007/s00382-019-04903-0 |
[91] |
Zhang, Y., J. L. Jin, P. Yan, et al., 2020: Long-term variations of major atmospheric compositions observed at the background stations in three key areas of China. Adv. Climate Change Res., 11, 370–380. doi: 10.1016/j.accre.2020.11.005 |
[92] |
Zhao, A., C. L. Ryder, and L. J. Wilcox, 2022: How well do the CMIP6 models simulate dust aerosols? Atmos. Chem. Phys., 22, 2095–2119. doi: 10.5194/acp-22-2095-2022 |
[93] |
Zhao, X. Y., R. J. Allen, and E. S. Thomson, 2021: An implicit air quality bias due to the state of pristine aerosol. Earth’s Future, 9, e2021EF001979. doi: 10.1029/2021EF001979 |