[1] Bao, C. L., 1986: Research progresses of heavy rainfall over South China in pre-summer rainy season. Acta Oceanol. Sinica, 8, 31–40. (in Chinese)
[2] Bao, X. H., Y. L. Luo, and X. Y. Gao, 2021: The synoptic impacts on the convection initiation of a warm-sector heavy rainfall event over coastal South China prior to the monsoon onset: A numerical modeling study. J. Geophys. Res. Atmos., 126, e2020JD034335. doi: 10.1029/2020JD034335
[3] Brewster, K., M. Hu, M. Xue, et al., 2005: Efficient assimilation of radar data at high resolution for short-range numerical weather prediction. 3.06. Available online at http://twister.ou.edu/papers/BrewsterWWRP_Nowcasting.pdf. Accessed on 27 July 2022.
[4] Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 2687–2710. doi: 10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2
[5] Changnon, S. A., Jr., 1968: The La Porte weather anomaly—fact or fiction? Bull. Amer. Meteor. Soc., 49, 4–11. doi: 10.1175/1520-0477-49.1.4
[6] Chen, Y. R. X., and Y. L. Luo, 2018: Analysis of paths and sources of moisture for the South China rainfall during the presummer rainy season of 1979–2014. J. Meteor. Res., 32, 744–757. doi: 10.1007/s13351-018-8069-7
[7] Cifelli, R., W. A. Petersen, L. D. Carey, et al., 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res. Atmos., 107, 8077, doi: 10.1029/2000JD000264.
[8] Cocks, S. B., L. Tang, P. F. Zhang, et al., 2019: A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part II: Performance verification and case study analysis. J. Hydrometeor., 20, 999–1014. doi: 10.1175/JHM-D-18-0070.1
[9] Davis, C., N. Atkins, D. Bartels, et al., 2004: The bow echo and MCV experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 1075–1094. doi: 10.1175/BAMS-85-8-1075
[10] Davis, J. M., and M. D. Parker, 2014: Radar climatology of tornadic and nontornadic vortices in high-shear, low-CAPE environments in the mid-Atlantic and southeastern United States. Wea. Forecasting, 29, 828–853, doi: 10.1175/WAF-D-13-00127.1.
[11] Ding, Y. H., 1994: Monsoons over China. Kluwer Academic Publishers, Boston, 419 pp.
[12] Du, Y., and G. X. Chen, 2019: Heavy rainfall associated with double low-level jets over southern China. Part II: Convection initiation. Mon. Wea. Rev., 147, 543–565. doi: 10.1175/MWR-D-18-0102.1
[13] Gao, X. Y., Y. L. Luo, Y. L. Lin, et al., 2022: A source of WRF simulation error for the early-summer warm-sector heavy rainfall over South China coast: Land-sea thermal contrast in the boundary layer. J. Geophys. Res. Atmos., 127, e2021JD035179. doi: 10.1029/2021JD035179
[14] Huang, S. S., Z. G. Li, C. L. Bao, et al., 1986: Heavy Rainfall over Southern China in the Pre-Summer Rainy Season. Guangdong Science and Technology Press, Guangzhou, 244 pp. (in Chinese)
[15] Johnson, J. T., P. L. MacKeen, A. Witt, et al., 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263–276. doi: 10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
[16] Li, H. Q., Q. L. Wan, D. D. Peng, et al., 2020: Multiscale analysis of a record-breaking heavy rainfall event in Guangdong, China. Atmos. Res., 232, 104703. doi: 10.1016/j.atmosres.2019.104703
[17] Li, M. X., Y. L. Luo, D.-L. Zhang, et al., 2021: Analysis of a record-breaking rainfall event associated with a monsoon coastal megacity of South China using multisource data. IEEE Trans. Geosci. Remote Sens., 59, 6404–6414. doi: 10.1109/tgrs.2020.3029831
[18] Liu, C. T., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 3591–3595. doi: 10.1002/2015GL063776
[19] Luo, Y. L., M. W. Wu, F. M. Ren, et al., 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 8703–8719. doi: 10.1175/JCLI-D-16-0057.1
[20] Luo, Y. L., R. H. Zhang, Q. L. Wan, et al., 2017: The Southern China Monsoon Rainfall Experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999–1013. doi: 10.1175/BAMS-D-15-00235.1
[21] Luo, Y. L., R. D. Xia, and J. C. L. Chan, 2020: Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008–2019. J. Meteor. Soc. Japan, 98, 19–42. doi: 10.2151/jmsj.2020-002
[22] Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, Ltd., Chichester, 430 pp.
[23] Morales, A., R. S. Schumacher, and S. M. Kreidenweis, 2015: Mesoscale vortex development during extreme precipitation: Colorado, September 2013. Mon. Wea. Rev., 143, 4943–4962. doi: 10.1175/MWR-D-15-0086.1
[24] Newman, J. F., V. Lakshmanan, P. L. Heinselman, et al., 2013: Range-correcting azimuthal shear in Doppler radar data. Wea. Forecasting, 28, 194–211. doi: 10.1175/WAF-D-11-00154.1
[25] Nielsen, E. R., and R. S. Schumacher, 2018: Dynamical insights into extreme short-term precipitation associated with supercells and mesovortices. J. Atmos. Sci., 75, 2983–3009. doi: 10.1175/JAS-D-17-0385.1
[26] Nielsen, E. R., and R. S. Schumacher, 2020a: Dynamical mechanisms supporting extreme rainfall accumulations in the Houston “Tax Day” 2016 flood. Mon. Wea. Rev., 148, 83–109. doi: 10.1175/MWR-D-19-0206.1
[27] Nielsen, E. R., and R. S. Schumacher, 2020b: Observations of extreme short-term precipitation associated with supercells and mesovortices. Mon. Wea. Rev., 148, 159–182. doi: 10.1175/MWR-D-19-0146.1
[28] Ramage, C. S., 1952: Variation of rainfall over South China through the wet season. Bull. Amer. Meteor. Soc., 33, 308–311. doi: 10.1175/1520-0477-33.7.308
[29] Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 3067–3077. doi: 10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2
[30] Seo, B.-C., W. F. Krajewski, and A. Ryzhkov, 2020: Evaluation of the specific attenuation method for radar-based quantitative precipitation estimation: Improvements and practical challenges. J. Hydrometeor., 21, 1333–1347. doi: 10.1175/JHM-D-20-0030.1
[31] Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, 1–27. doi: 10.1175/EI156.1
[32] Smith, T. M., and K. L. Elmore, 2004: The use of radial velocity derivative to diagnose rotation and divergence. 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, Amer. Meteor. Soc., P5.6. Available online at http://ams.confex.com/ams/pdfpapers/81827.pdf. Accessed on 28 July 2022.
[33] Sun, J. Z., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661. doi: 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
[34] Sun, X. Y., Y. L. Luo, X. Y. Gao, et al., 2021: On the localized extreme rainfall over the Great Bay Area in South China with complex topography and strong UHI effects. Mon. Wea. Rev., 149, 2777–2801. doi: 10.1175/MWR-D-21-0004.1
[35] Tang, Y., X. Xu, M. Xue, et al., 2020: Characteristics of low-level meso-γ-scale vortices in the warm season over East China. Atmos. Res., 235, 104768. doi: 10.1016/j.atmosres.2019.104768
[36] Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804–2823. doi: 10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2
[37] Wang, G. L., D.-L. Zhang, and J. S. Sun, 2021: A multiscale analysis of a nocturnal extreme rainfall event of 14 July 2017 in Northeast China. Mon. Wea. Rev., 149, 173–187. doi: 10.1175/MWR-D-20-0232.1
[38] Wang, H., Y. L. Luo, and B. J.-D. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos., 119, 13,206–13,232. doi: 10.1002/2014JD022339
[39] Wang, Y. D., S. Cocks, L. Tang, et al., 2019: A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part I: Algorithm description. J. Hydrometeor., 20, 985–997. doi: 10.1175/JHM-D-18-0071.1
[40] Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 2779–2803. doi: 10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2
[41] Wu, M. W., and Y. L. Luo, 2016: Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. J. Meteor. Res., 30, 719–736. doi: 10.1007/s13351-016-6089-8
[42] Wu, M. W., Y. L. Luo, F. Chen, et al., 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteor. Climatol., 58, 1799–1819. doi: 10.1175/JAMC-D-18-0284.1
[43] Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161–193. doi: 10.1007/s007030070003
[44] Yao, X. P., J. L. Ma, D.-L. Zhang, et al., 2020: A 33-yr mei-yu-season climatology of shear lines over the Yangtze–Huai River basin in eastern China. J. Appl. Meteor. Climatol., 59, 1125–1137. doi: 10.1175/JAMC-D-19-0229.1
[45] Yin, J. F., D.-L. Zhang, Y. L. Luo, et al., 2020: On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography. Mon. Wea. Rev., 148, 955–979. doi: 10.1175/MWR-D-19-0212.1
[46] Yu, S. T., Y. L. Luo, C. Wu, et al., 2022: Convective and microphysical characteristics of extreme precipitation revealed by multisource observations over the Pearl River Delta at monsoon coast. Geophys. Res. Lett., 49, e2021GL097043. doi: 10.1029/2021GL097043
[47] Zeng, Z. L., and D. H. Wang, 2022: On the local rain-rate extreme associated with a mesovortex over South China: Observational structures, characteristics, and evolution. Mon. Wea. Rev., 150, 1075–1096. doi: 10.1175/MWR-D-21-0033.1
[48] Zhang, D.-L., 1992: The formation of a cooling-induced mesovortex in the trailing stratiform region of a midlatitude squall line. Mon. Wea. Rev., 120, 2763–2785. doi: 10.1175/1520-0493(1992)120<2763:TFOACI>2.0.CO;2
[49] Zhang, D.-L., 2020: Rapid urbanization and more extreme rainfall events. Sci. Bull., 65, 516–518. doi: 10.1016/j.scib.2020.02.002
[50] Zhang, M., and D.-L. Zhang, 2012: Subkilometer simulation of a torrential-rain-producing mesoscale convective system in East China. Part I: Model verification and convective organization. Mon. Wea. Rev., 140, 184–201. doi: 10.1175/MWR-D-11-00029.1
[51] Zipser, E. J., D. J. Cecil, C. T. Liu, et al., 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 1057–1072. doi: 10.1175/BAMS-87-8-1057