[1] Asrar, G. R., V. Ryabinin, and V. Detemmerman, 2012: Climate science and services: Providing climate information for adaptation, sustainable development and risk management. Curr. Opin. Environ. Sustain., 4, 88–100. doi: 10.1016/j.cosust.2012.01.003
[2] Belcher, S., P. Stott, L. C. Song, et al., 2018: Preface to special issue on Climate Science for Service Partnership China. Adv. Atmos. Sci., 35, 897–898. doi: 10.1007/s00376-018-8002-0
[3] Bett, P. E., A. A. Scaife, C. F. Li, et al., 2018: Seasonal forecasts of the summer 2016 Yangtze River basin rainfall. Adv. Atmos. Sci., 35, 918–926. doi: 10.1007/s00376-018-7210-y
[4] Bett, P. E., N. Martin, A. A. Scaife, et al., 2020: Seasonal rainfall forecasts for the Yangtze River basin of China in summer 2019 from an improved climate service. J. Meteor. Res., 34, 904–916. doi: 10.1007/s13351-020-0049-z
[5] Buontempo, C., H. M. Hanlon, M. Bruno Soares, et al., 2018: What have we learnt from EUPORIAS climate service prototypes? Climate Serv., 9, 21–32. doi: 10.1016/j.cliser.2017.06.003
[6] Camp, J., M. J. Roberts, R. E. Comer, et al., 2019: The western Pacific subtropical high and tropical cyclone landfall: Seasonal forecasts using the Met Office GloSea5 system. Quart. J. Roy. Meteor. Soc., 145, 105–116. doi: 10.1002/qj.3407
[7] Camp, J., P. E. Bett, N. Golding, 2020: Verification of the 2019 GloSea5 seasonal tropical cyclone landfall forecast for East China. J. Meteor. Res., 34, 917–925. doi: 10.1007/s13351-020-0043-5
[8] Cash, D. W., J. C. Borck, and A. G. Patt, 2006: Countering the loading-dock approach to linking science and decision making: Comparative analysis of El Niño/Southern Oscillation (ENSO) forecasting systems. Sci. Technol. Hum. Values, 31, 465–494. doi: 10.1177/0162243906287547
[9] China Meteorological Administration (CMA), 2015: China framework for climate service. Published online by China Meteorological News Press on 17 March 2015. Available online at http://www.cma.gov.cn/en2014/20150311/2015323e/2015323e07/2015323e09/201503/t20150317_276866.html. Accessed on 23 September 2020.
[10] Christel, I., D. Hemment, D. Bojovic, et al., 2018: Introducing design in the development of effective climate services. Climate Serv., 9, 111–121. doi: 10.1016/j.cliser.2017.06.002
[11] Golding, N., C. Hewitt, and P. Q. Zhang, 2017a: Effective engagement for climate services: Methods in practice in China. Climate Serv., 8, 72–76. doi: 10.1016/j.cliser.2017.11.002
[12] Golding, N., C. Hewitt, P. Q. Zhang, et al., 2017b: Improving user engagement and uptake of climate services in China. Climate Serv., 5, 39–45. doi: 10.1016/j.cliser.2017.03.004
[13] Golding, N., C. Hewitt, P. Q. Zhang, et al., 2019: Co-development of a seasonal rainfall forecast service: Supporting flood risk management for the Yangtze River basin. Climate Risk Manag., 23, 43–49. doi: 10.1016/j.crm.2019.01.002
[14] Goodess, C. M., A. Troccoli, C. Acton, et al., 2019: Advancing climate services for the European renewable energy sector through capacity building and user engagement. Climate Serv., 16, 100139. doi: 10.1016/j.cliser.2019.100139
[15] Hewitt, C., and N. Golding, 2018: Development and pull-through of climate science to services in China. Adv. Atmos. Sci., 35, 905–908. doi: 10.1007/s00376-018-7255-y
[16] Hewitt, C., S. Mason, and D. Walland, 2012: The global framework for climate services. Nat. Climate Change, 2, 831–832. doi: 10.1038/nclimate1745
[17] Hewitt, C. D., R. C. Stone, and A. B. Tait, 2017: Improving the use of climate information in decision-making. Nat. Climate Change, 7, 614–616. doi: 10.1038/nclimate3378
[18] Hewitt, C. D., E. Allis, S. J. Mason, et al., 2020: Making society climate resilient: International progress under the Global Framework for Climate Services. Bull. Amer. Meteor. Soc., 101, E237–E252. doi: 10.1175/BAMS-D-18-0211.1
[19] Kent, C., E. Pope, V. Thompson, et al., 2017: Using climate mo-del simulations to assess the current climate risk to maize production. Environ. Res. Lett., 12, 054012. doi: 10.1088/1748-9326/aa6cb9
[20] Kent, C., E. Pope, N. Dunstone, et al., 2019: Maize drought hazard in the northeast farming region of China: Unprecedented events in the current climate. J. Appl. Meteor. Climatol., 58, 2247–2258. doi: 10.1175/JAMC-D-19-0096.1
[21] Knudson, C., and Z. Guido, 2019: The missing middle of climate services: Layering multiway, two-way, and one-way modes of communicating seasonal climate forecasts. Climatic Change, 157, 171–187. doi: 10.1007/s10584-019-02540-4
[22] Lemos, M. C., C. J. Kirchhoff, and V. Ramprasad, 2012: Narrowing the climate information usability gap. Nat. Climate Change, 2, 789–794. doi: 10.1038/nclimate1614
[23] Li, C. F., A. A. Scaife, R. Y. Lu, et al., 2016: Skillful seasonal prediction of Yangtze river valley summer rainfall. Environ. Res. Lett., 11, 094002. doi: 10.1088/1748-9326/11/9/094002
[24] Liu, Y., H.-L. Ren, A. A. Scaife, et al., 2018: Evaluation and statistical downscaling of East Asian summer monsoon forecasting in BCC and MOHC seasonal prediction systems. Quart. J. Roy. Meteor. Soc., 144, 2798–2811. doi: 10.1002/qj.3405
[25] Lockwood, J. F., H. E. Thornton, N. Dunstone, et al., 2019: Skilful seasonal prediction of winter wind speeds in China. Climate Dyn., 53, 3937–3955. doi: 10.1007/s00382-019-04763-8
[26] Su, Z., W. Timmermans, Y. Zeng, et al., 2018: An overview of European efforts in generating climate data records. Bull. Amer. Meteor. Soc., 99, 349–359. doi: 10.1175/BAMS-D-16-0074.1
[27] Tian, Z., H. Q. Xu, L. X. Sun, et al., 2020: Using a cross-scale simulation tool to assess future maize production under multiple climate change scenarios: An application to the Northeast Farming Region of China. Climate Serv., 18, 100150. doi: 10.1016/j.cliser.2020.100150
[28] United Nations Framework Convention on Climate Change (UNFCCC), 2015: The Paris Agreement. 27 pp. Available online at http://unfccc.int/paris_agreement/items/9485.php. Accessed on 23 September 2020.
[29] Vaughan, C., S. Dessai, C. Hewitt, et al., 2017: Creating an enabling environment for investment in climate services: The case of Uruguay’s National Agricultural Information System. Climate Serv., 8, 62–71. doi: 10.1016/j.cliser.2017.11.001
[30] Vincent, K., M. Daly, C. Scannell, et al., 2017: What can climate services learn from theory and practice of co-production? Climate Serv., 12, 48–58. doi: 10.1016/j.cliser.2018.11.001
[31] World Meteorological Organization (WMO) Secretariat, 2014: GFCS climate services adaptation programme in Africa supports Maasai community members in Tanzania. WMO Bulletin, 63, 24–25. Available online at https://public.wmo.int/en/resources/bulletin/gfcs-climate-services-adaptation-programme-africa-supports-maasai-community. Accessed on 23 September 2020.
[32] Xu, H. Q., Z. Tian, X. G. He, et al., 2019: Future increases in irrigation water requirement challenge the water–food nexus in the northeast farming region of China. Agric. Water Manag., 213, 594–604. doi: 10.1016/j.agwat.2018.10.045
[33] Zeng, Y. J., Z. B. Su, I. Barmpadimos, et al., 2019: Towards a traceable climate service: Assessment of quality and usability of essential climate variables. Remote Sens., 11, 1186. doi: 10.3390/rs11101186