[1] Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol., 4, 1147–1168. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
[2] Albergel, C., P. De Rosnay, G. Balsamo, et al., 2012: Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeorol., 13, 1442–1460. doi: 10.1175/JHM-D-11-0107.1
[3] Balsamo, G., S. Boussetta, E. Dutra, et al., 2011: Evolution of land-surface processes in the IFS. ECMWF Newslett., 127, 17–22. doi: 10.21957/x1j3i7bz
[4] Bonan, G. B., 1998: The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model. J. Climate, 11, 1307–1326. doi: 10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2
[5] Chen, F., K. Mitchell, J. Schaake, et al., 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos., 101, 7251–7268. doi: 10.1029/95JD02165
[6] Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1023. doi: 10.1175/BAMS-84-8-1013
[7] Dai, Y. J., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281–2299. doi: 10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2
[8] Dai, Y., S. G. Wei, Q. Y. Duan, et al., 2013: Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol., 14, 869–887. doi: 10.1175/jhm-d-12-0149.1
[9] Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387 + STR, National Center for Atmospheric Research, Boulder, CO, doi: 10.5065/D67W6959.
[10] Eyring, V., S. Bony, G. A. Meehl, et al., 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Mod. Dev., 9, 1937–1958. doi: 10.5194/gmd-9-1937-2016
[11] Fan, Y., and H. van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res. Atmos., 109, D10102. doi: 10.1029/2003JD004345
[12] Griffies, S. M., 2010: Elements of MOM4p1. GFDL Ocean Group Technical Report No. 6, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, 444 pp.
[13] IPCC, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Pa-nel On Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[14] Jetten, V., A. de Roo, and D. Favis-Mortlock, 1999: Evaluation of field-scale and catchment-scale soil erosion models. CATENA, 37, 521–541. doi: 10.1016/S0341-8162(99)00037-5
[15] Jung, M., M. Reichstein, H. A. Margolis, et al., 2011: Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci., 116, G00J07. doi: 10.1029/2010JG001566
[16] Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643. doi: 10.1175/BAMS-83-11-1631
[17] Kumar, S., P. A. Dirmeyer, V. Merwade, et al., 2013: Land use/cover change impacts in CMIP5 climate simulations: A new methodology and 21st century challenges. J. Geophys. Res. Atoms., 118, 6337–6353. doi: 10.1002/jgrd.50463
[18] Lee, X., M. L. Goulden, D. Y. Hollinger, et al., 2011: Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 479, 384–387. doi: 10.1038/nature10588
[19] Li, H. Y., C. B. Fu, and W. D. Guo, 2017: An integrated evaluation of land surface energy fluxes over China in seven reanalysis/modeling products. J. Geophys. Res. Atmos., 122, 8543–8566. doi: 10.1002/2016JD026166
[20] Li, J. D., Q. Y. Duan, W. Gong, et al., 2013: Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrol. Earth Syst. Sci., 17, 3279–3293. doi: 10.5194/hess-17-3279-2013
[21] Li, Y., N. De Noblet-Ducoudré, E. L. Davin, et al., 2016: The role of spatial scale and background climate in the latitudinal temperature response to deforestation. Earth Syst. Dynam., 7, 167–181. doi: 10.5194/esd-7-167-2016
[22] Liang, X., D. P. Lettenmaier, E. F. Wood, et al., 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atoms., 99, 1415–1428. doi: 10.1029/94JD00483
[23] Niu, G. Y., Z. L. Yang, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atoms., 116, D12109. doi: 10.1029/2010JD015139
[24] Oleson, K., D. M. Lawrence, G. B. Bonan, et al., 2010: Technical Description of Version 4.0 of the Community Land Model. NCAR Technical Note NCAR/TN-478 + STR, National Center for Atmospheric Research, Boulder, Colorado, 257 pp, doi: 10.5065/D6FB50WZ..
[25] Perrin, C., C. Michel, and V. Andréassian, 2001: Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments J. Hydrol., 242, 275–301. doi: 10.1016/S0022-1694(00)00393-0
[26] Pitman, A. J., N. de Noblet-Ducoudré, F. T. Cruz, et al., 2009: Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett., 36, L14814. doi: 10.1029/2009GL039076
[27] Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM 5. Part I: Model Description. MPI-Report No. 349, MPI für Meteorologie, Hamburg, 127 pp.
[28] Roeckner, E., R. Brokopf, M. Esch, et al., 2004: The Atmospheric General Circulation Model ECHAM5. Part II: Sensitivity of Simulated Climate to Horizontal and Vertical Resolution, MPI-Report No. 354, MPI für Meteorologie, Hamburg, 55 pp.
[29] Rowntree, P. R., 1991: Atmospheric parameterization schemes for evaporation over land: Basic concepts and climate modeling aspects. Land Surface Evaporation: Measurement and Parameterization, T. J. Schmugge, and J.-C. André, Eds., Springer, New York, 5–29, doi: 10.1007/978-1-4612-3032-8_2.
[30] Schlosser, C. A., A. G. Slater, A. Robock, et al., 2000: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS Phase 2(d). Mon. Wea. Rev., 128, 301–321. doi: 10.1175/1520-0493(2000)128<0301:SOABGH>2.0.CO;2
[31] Slater, A. G., C. A. Schlosser, C. E. Desborough, et al., 2001: The representation of snow in land-surface schemes: Results from PILPS 2(d). J. Hydrometeorol., 2, 7–25. doi: 10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2
[32] Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 2831–2841.
[33] Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA, 109, 712–716. doi: 10.1073/pnas.1116706108
[34] Wei, J. F., P. A. Dirmeyer, Z. C. Guo, et al., 2010: How much do different land models matter for climate simulation? Part I: Climatology and variability. J. Climate, 23, 3120–3134. doi: 10.1175/2010JCLI3177.1
[35] Wei, J. F., P. A. Dirmeyer, Z. L. Yang, et al., 2017: Effect of land model ensemble versus coupled model ensemble on the simulation of precipitation climatology and variability. Theor. Appl. Climatol., 134, 793–800. doi: 10.1007/s00704-017-2310-7
[36] Xue, Y., P. J. Sellers, J. L. Kinter, et al., 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345–364. doi: 10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2
[37] Yu, R. C., 1994: A two-step shape preserving advection scheme. Adv. Atmos. Sci., 11, 479–490. doi: 10.1007/BF02658169