[1] Alexander, L. V., X. Zhang, T. C. Peterson, et al., 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos., 111, D05109. doi: 10.1029/2005JD006290
[2] Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 228–232. doi: 10.1038/nature01092
[3] Boo, K. O., W. T. Kwon, and H. J. Baek, 2006: Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophys. Res. Lett., 33, L01701. doi: 10.1029/2005GL023378
[4] Cao, Y., Q. L. You, and Q. R. Ma, 2019: Interdecadal characteristics of the summer extreme precipitation in the central and eastern Tibetan Plateau. J. Meteor. Sci., 39, 437–445. (in Chinese) doi: 10.3969/2018jms.0077
[5] Chen, M. Y., P. P. Xie, J. E. Janowiak, et al., 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249–266. doi: 10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2
[6] Chen, M. Y., W. Shi, P. P. Xie, et al., 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos., 113, D04110. doi: 10.1029/2007JD009132
[7] Chinowsky, P., J. Helman, S. Gulati, et al., 2019: Impacts of climate change on operation of the US rail network. Transp. Policy, 75, 183–191. doi: 10.1016/j.tranpol.2017.05.007
[8] Ding, Y. H., and L. Zhang, 2008: Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China. Chinese J. Atmos. Sci., 32, 794–805. (in Chinese) doi: 10.3878/j.issn.1006-9895.2008.04.08
[9] Gawthorpe, R. G., 1994: Wind effects on ground transportation. J. Wind Eng. Ind. Aerod., 52, 73–92. doi: 10.1016/0167-6105(94)90040-X
[10] Gilbert, R. O., 1987: Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Co., New York, 320 pp.
[11] Guo, X. J., J. B. Huang, Y. Luo, et al., 2017: Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theor. Appl. Climatol., 128, 507–522. doi: 10.1007/s00704-015-1718-1
[12] Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 1095–1108. doi: 10.1175/2009BAMS2607.1
[13] Helsel, D. R., and R. M. Hirsch, 2002: Statistical Methods in Water Resources. US Geological Survey, Reston, 323 pp.
[14] Herring, S. C., M. P. Hoerling, J. P. Kossin, et al., 2015: Explaining extreme events of 2014 from a climate perspective. Bull. Amer. Meteor. Soc., 96, S1–S172. doi: 10.1175/BAMS-ExplainingExtremeEvents2014.1
[15] Huang, J., S. L. Sun, Y. Xue, et al., 2014: Spatial and temporal variability of precipitation and dryness/wetness during 1961–2008 in Sichuan Province, West China. Water Resour. Manage., 28, 1655–1670. doi: 10.1007/s11269-014-0572-8
[16] Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 38–55. doi: 10.1175/JHM560.1
[17] Huffman, G. J., R. F. Adler, D. T. Bolvin, et al., 2010: The TRMM multi-satellite precipitation analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael, and F. Hossain, Eds., Springer, Dordrecht, 3–22, doi: 10.1007/978-90-481-2915-7.
[18] Jiang, Z. H., J. Song, J. Li, et al., 2012: Extreme climate events in China: IPCC-AR4 model evaluation and projection. Climatic Change, 110, 385–401. doi: 10.1007/s10584-011-0090-0
[19] Jones, P. D., and T. Osborn, 2020: CRU TS4.04: Climatic Research Unit (CRU) Time-Series (TS) version 4.04 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2019). Centre for Environmental Data Analysis. Available online at https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9. Accessed on 19 May 2021.
[20] Kendall, M. G., 1975: Rank Correlation Methods. Griffin, London, 160 pp.
[21] Li, C. X., T. B. Zhao, C. X. Shi, et al., 2020: Evaluation of daily precipitation product in China from the CMA Global Atmospheric Interim Reanalysis. J. Meteor. Res., 34, 117–136. doi: 10.1007/s13351-020-8196-9
[22] Li, S. S., G. P. Li, X. F. Wang, et al., 2020: Precipitation characteristics of an abrupt heavy rainfall event over the complex terrain of southwest China observed by the FY-4A satellite and doppler weather radar. Water, 12, 2502. doi: 10.3390/w12092502
[23] Mei, C., J. H. Liu, M. T. Chen, et al., 2018: Multi-decadal spatial and temporal changes of extreme precipitation patterns in northern China (Jing-Jin-Ji district, 1960–2013). Quat. Int., 476, 1–13. doi: 10.1016/j.quaint.2018.03.008
[24] Moberg, A., P. D. Jones, D. Lister, et al., 2006: Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J. Geophys. Res. Atmos., 111, D22106. doi: 10.1029/2006JD007103
[25] Niu, T., L. X. Chen, and Z. J. Zhou, 2004: The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps. Adv. Atmos. Sci., 21, 193–203. doi: 10.1007/BF02915705
[26] Overland, J. E., and M. Y. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A Dyn. Meteor. Oceanogr., 62, 1–9. doi: 10.1111/j.1600-0870.2009.00421.x
[27] Peng, S. Z., and Z. Li, 2018: Potential land use adjustment for future climate change adaptation in revegetated regions. Sci. Total Environ., 639, 476–484. doi: 10.1016/j.scitotenv.2018.05.194
[28] Remedio, A. R., C. Teichmann, L. Buntemeyer, et al., 2019: Evaluation of new CORDEX simulations using an updated Köppen–Trewartha climate classification. Atmosphere, 10, 726. doi: 10.3390/atmos10110726
[29] Schneider, U., P. Finger, A. Meyer-Christoffer, et al., 2017: Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere, 8, 52. doi: 10.3390/atmos8030052
[30] Seth, A., S. A. Rauscher, S. J. Camargo, et al., 2007: RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Climate Dyn., 28, 461–480. doi: 10.1007/s00382-006-0191-z
[31] Sun, C., Z. G. Cheng, X. L. Mao, et al., 2017: Extreme climatic change trend and features in Sichuan for the latest 44 years. J. Lanzhou Univ. Nat. Sci., 53, 119–126. (in Chinese) doi: 10.13885/j.issn.0455-2059.2017.01.018
[32] Top, S., L. Kotova, L. De Cruz, et al., 2021: Evaluation of regional climate models ALARO-0 and REMO2015 at 0.22° resolution over the CORDEX Central Asia domain. Geosci. Model Dev., 14, 1267–1293. doi: 10.5194/gmd-14-1267-2021
[33] Vincent, L. A., T. C. Peterson, V. R. Barros, et al., 2005: Observed trends in indices of daily temperature extremes in South America 1960–2000. J. Climate, 18, 5011–5023. doi: 10.1175/JCLI3589.1
[34] Wu, G. X., A. M. Duan, X. Q. Zhang, et al., 2013: Extreme weather and climate changes and its environmental effects over the Tibetan Plateau. Chinese J. Nature, 35, 167–171. (in Chinese)
[35] Xie, P. P., M. Y. Chen, S. Yang, et al., 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607–626. doi: 10.1175/JHM583.1
[36] Yao, T. D., 2019: Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci. Bull., 64, 417. doi: 10.1016/j.scib.2019.03.033
[37] Yatagai, A., O. Arakawa, K. Kamiguchi, et al., 2009: A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges. SOLA, 5, 137–140. doi: 10.2151/sola.2009-035
[38] Yatagai, A., K. Kamiguchi, O. Arakawa, et al., 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401–1415. doi: 10.1175/BAMS-D-11-00122.1
[39] You, Q. L., S. C. Kang, E. Aguila, et al., 2008: Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res. Atmos., 113, D07101. doi: 10.1029/2007JD009389
[40] You, Q. L., S. C. Kang, E. Aguilar, et al., 2011: Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Climate Dyn., 36, 2399–2417. doi: 10.1007/s00382-009-0735-0
[41] Zhang, X. B., L. Alexander, G. C. Hegerl, et al., 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change, 2, 851–870. doi: 10.1002/wcc.147
[42] Zhou, B. T., Q. H. Wen, Y. Xu, et al., 2014: Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27, 6591–6611. doi: 10.1175/JCLI-D-13-00761.1
[43] Zhu, X. P., A. R. Zhang, P. L. Wu, et al., 2019: Uncertainty impacts of climate change and downscaling methods on future runoff projections in the Biliu River basin. Water, 11, 2130. doi: 10.3390/w11102130