[1] Chang, C.-P., Y. S. Zhang, and T. Li, 2000a: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 4310–4325. doi: 10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2
[2] Chang, C.-P., Y. S. Zhang, and T. Li, 2000b: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13, 4326–4340. doi: 10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2
[3] Chatterjee, P., and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 1171–1194. doi: 10.1256/qj.03.133
[4] Hsu, P.-C., and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24, 942–961. doi: 10.1175/2010JCLI3834.1
[5] Hsu, P.-C., T. Li, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24, 927–941. doi: 10.1175/2010JCLI3833.1
[6] Jiang, X. A., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 3777–3795. doi: 10.1175/JCLI3516.1
[7] Jiang, X. A., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039. doi: 10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2
[8] Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1644. doi: 10.1175/BAMS-83-11-1631
[9] Li, C. H., T. Li, A. L. Lin, et al., 2015: Relationship between summer rainfall anomalies and sub-seasonal oscillations in South China. Climate Dyn., 44, 423–439. doi: 10.1007/s00382-014-2172-y
[10] Li, T., 2010: Monsoon climate variabilities. Climate Dynamics: Why Does Climate Vary? Sun, D.-Z., and F. Bryan, Eds., American Geophysical Union, Washington, 27–51, doi: 10.1029/2008GM000782.
[11] Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 1–33. doi: 10.1007/s13351-014-3087-6
[12] Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 16, 285–314. doi: 10.3319/TAO.2005.16.2.285(A)
[13] Li, T., and P.-C. Hsu, 2018: Fundamentals of Tropical Climate Dynamics. Springer, Cham, 229 pp, doi: 10.1007/978-3-319-59597-9.
[14] Li, T., B. Wang, B. Wu, et al., 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 987–1006. doi: 10.1007/s13351-017-7147-6
[15] Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708. doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
[16] Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123. doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
[17] Qi, Y. J., R. H. Zhang, T. Li, et al., 2008: Interactions between the summer mean monsoon and the intraseasonal oscillation in the Indian monsoon region. Geophys. Res. Lett., 35, L17704. doi: 10.1029/2008GL034517
[18] Qi, Y. J., T. Li, R. H. Zhang, et al., 2019: Interannual relationship between intensity of rainfall intraseasonal oscillation and summer-mean rainfall over Yangtze River Basin in eastern China. Climate Dyn., 53, 3089–3108. doi: 10.1007/s00382-019-04680-w
[19] Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627. doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
[20] Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 43–61. doi: 10.1007/BF01026810
[21] Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
[22] Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 1195–1211. doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2
[23] Wang, X. H., T. Li, and M. C. Chen, 2019: Mechanism for asymmetric atmospheric responses in the western North Pacific to El Niño and La Niña. Climate Dyn., 53, 3957–3969. doi: 10.1007/s00382-019-04767-4
[24] Wen, M., T. Li, R. H. Zhang, et al., 2010: Structure and origin of the quasi-biweekly oscillation over the tropical Indian Ocean in boreal spring. J. Atmos. Sci., 67, 1965–1982. doi: 10.1175/2009JAS3105.1
[25] Wu, B., T. Li, and T. J. Zhou, 2010: Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J. Climate, 23, 4807–4822. doi: 10.1175/2010JCLI3222.1
[26] Wu, B., T. J. Zhou, and T. Li, 2017a: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621–9635. doi: 10.1175/JCLI-D-16-0489.1
[27] Wu, B., T. J. Zhou, and T. Li, 2017b: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30, 9637–9650. doi: 10.1175/JCLI-D-16-0495.1
[28] Xu, Z. Q., T. Li, and K. Fan, 2017: The weakened intensity of the atmospheric quasi-biweekly oscillation over the western North Pacific during late summer around the late 1990s. J. Climate, 30, 9807–9826. doi: 10.1175/JCLI-D-16-0759.1
[29] Yang, S. Y., and T. Li, 2016: Intraseasonal variability of air temperature over the mid–high latitude Eurasia in boreal winter. Climate Dyn., 47, 2155–2175. doi: 10.1007/s00382-015-2956-8
[30] Yang, S. Y., and T. Li, 2017: The role of intraseasonal variability at mid-high latitudes in regulating Pacific blockings during boreal winter. Int. J. Climatol., 37, 1248–1256. doi: 10.1002/joc.5080
[31] Yao, S. X., Q. Huang, T. Li, et al., 2014: The intraseasonal oscillations of precipitation and circulations from January to March in 2010 in East Asia. Meteor. Atmos. Phys., 123, 67–79. doi: 10.1007/s00703-013-0287-z
[32] Zhou, C. H., and T. Li, 2010: Upscale feedback of tropical synoptic variability to intraseasonal oscillations through the nonlinear rectification of the surface latent heat flux. J. Climate, 23, 5738–5754. doi: 10.1175/2010JCLI3468.1
[33] Zhu, Y., T. Li, M. Zhao, et al., 2019: Interaction between the MJO and high-frequency waves over the Maritime Continent in boreal winter. J. Climate, 32, 3819–3835. doi: 10.1175/JCLI-D-18-0511.1
[34] Zhu, Z. W., S. J. Chen, K. Yuan, et al., 2017: Empirical subseasonal prediction of summer rainfall anomalies over the middle and lower reaches of the Yangtze River basin based on atmospheric intraseasonal oscillation. Atmosphere, 8, 185. doi: 10.3390/atmos8100185