[1] Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, London, 489 pp.
[2] Ayarzagüena, B., U. Langematz, S. Meul, et al., 2013: The role of climate change and ozone recovery for the future timing of major stratospheric warmings. Geophys. Res. Lett., 40, 2460–2465. doi: 10.1002/grl.50477
[3] Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res. Atmos., 104, 30,937–30,946. doi: 10.1029/1999JD900445
[4] Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584. doi: 10.1126/science.1063315
[5] Bell, C. J., L. J. Gray, and J. Kettleborough, 2010: Changes in Northern Hemisphere stratospheric variability under increased CO2 concentrations. Quart. J. Roy. Meteor. Soc., 136, 1181–1190. doi: 10.1002/qj.633
[6] Butler, A. H., and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807. doi: 10.1029/2011GL048084
[7] Butler, A. H., D. J. Seidel, S. C. Hardiman, et al., 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 1913–1928. doi: 10.1175/BAMS-D-13-00173.1
[8] Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449–469. doi: 10.1175/JCLI3996.1
[9] Cohen, J., and J. Jones, 2011: Tropospheric precursors and stratospheric warmings. J. Climate, 24, 6562–6572. doi: 10.1175/2011JCLI4160.1
[10] Coy, L., S. Eckermann, and K. Hoppel, 2009: Planetary wave breaking and tropospheric forcing as seen in the stratospheric sudden warming of 2006. J. Atmos. Sci., 66, 495–507. doi: 10.1175/2008JAS2784.1
[11] Domeisen, D. I. V., 2019: Estimating the frequency of sudden stratospheric warming events from surface observations of the North Atlantic Oscillation. J. Geophys. Res. Atmos., 124, 3180–3194. doi: 10.1029/2018JD030077
[12] Edmon, H. J., Jr., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37, 2600–2616. doi: 10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2
[13] Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 1–23.
[14] Garfinkel, C. I., A. H. Butler, D. W. Waugh, et al., 2012: Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J. Geophys. Res. Atmos., 117, D19106. doi: 10.1029/2012JD017777
[15] Garfinkel, C. I., S.-W. Son, K. Song, et al., 2017: Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys. Res. Lett., 44, 374–382. doi: 10.1002/2016GL072035
[16] Gerber, E. P., C. Orbe, and L. M. Polvani, 2009: Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett., 36, L24801. doi: 10.1029/2009GL040913
[17] Horan, M. F., and T. Reichler, 2017: Modeling seasonal sudden stratospheric warming climatology based on polar vortex statistics. J. Climate, 30, 10,101–10,116. doi: 10.1175/JCLI-D-17-0257.1
[18] Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[19] Karpechko, A. Y., A. Charlton-Perez, M. Balmaseda, et al., 2018: Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophys. Res. Lett., 45, 13,538–13,546. doi: 10.1029/2018GL081091
[20] Li, Y. P., and W. S. Tian, 2017: Different impact of central Pacific and eastern Pacific El Niño on the duration of sudden stratospheric warming. Adv. Atmos. Sci., 34, 771–782. doi: 10.1007/s00376-017-6286-0
[21] Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 1479–1494. doi: 10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2
[22] Maury, P., C. Claud, E. Manzini, et al., 2016: Characteristics of stratospheric warming events during Northern winter. J. Geophys. Res. Atmos., 121, 5368–5380. doi: 10.1002/2015JD024226
[23] McLandress, C., and T. G. Shepherd, 2009: Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere Model. J. Climate, 22, 5449–5463. doi: 10.1175/2009JCLI3069.1
[24] Mitchell, D. M., S. M. Osprey, L. J. Gray, et al., 2012a: The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex. J. Atmos. Sci., 69, 2608–2618. doi: 10.1175/JAS-D-12-021.1
[25] Mitchell, D. M., A. J. Charlton-Perez, L. J. Gray, et al., 2012b: The nature of Arctic polar vortices in chemistry–climate models. Quart. J. Roy. Meteor. Soc., 138, 1681–1691. doi: 10.1002/qj.1909
[26] Mitchell, D. M., L. J. Gray, J. Anstey, et al., 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 2668–2682. doi: 10.1175/JCLI-D-12-00030.1
[27] Nakagawa, K. I., and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33, L04801. doi: 10.1029/2005GL024784
[28] O’Callaghan, A., M. Joshi, D. Stevens, et al., 2014: The effects of different sudden stratospheric warming types on the ocean. Geophys. Res. Lett., 41, 7739–7745. doi: 10.1002/2014GL062179
[29] Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217–229. doi: 10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2
[30] Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 3548–3554. doi: 10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2
[31] Rao, J., C. I. Garfinkel, and I. P. White, 2020: Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models. J. Geophys. Res. Atmos., 125, e2019JD031919. doi: 10.1029/2019JD031919
[32] Scherhag, R., 1952: Die explosionsartigen stratosphärenerwärmungen des spätwinters, 1951/52. Berichte des Deutschen Wetterdienstes in der US-Zone, 6, 51–63.
[33] Scott, R. K., and L. M. Polvani, 2006: Internal variability of the winter stratosphere. Part I: Time-independent forcing. J. Atmos. Sci., 63, 2758–2776. doi: 10.1175/JAS3797.1
[34] Seviour, W. J. M., D. M. Mitchell, and L. J. Gray, 2013: A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40, 5268–5273. doi: 10.1002/grl.50927
[35] Sigmond, M., J. F. Scinocca, V. V. Kharin, et al., 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98–102. doi: 10.1038/ngeo1698
[36] WMO Commission for Atmospheric Sciences (CAS), 1978: Abridged Final Report of the Seventh Session, Manila, 27 February–10 March 1978. Rep. WMO-No. 509, Secretariat of the WMO, Geneva, 113 pp.
[37] Xie, F., J. P. Li, W. S. Tian, et al., 2016: A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett., 11, 124026. doi: 10.1088/1748-9326/11/12/124026
[38] Xie, F., J. P. Li, J. K. Zhang, et al., 2017: Variations in North Pacific sea surface temperature caused by Arctic stratospheric ozone anomalies. Environ. Res. Lett., 12, 114023. doi: 10.1088/1748-9326/aa9005
[39] Yu, Y. Y., R. C. Ren, and M. Cai, 2015: Dynamic linkage between cold air outbreaks and intensity variations of the meridional mass circulation. J. Atmos. Sci., 72, 3214–3232. doi: 10.1175/JAS-D-14-0390.1
[40] Zhang, L. D., and Q. L. Chen, 2019: Analysis of the variations in the strength and position of stratospheric sudden warming in the past three decades. Atmos. Ocean. Sci. Lett., 12, 147–154. doi: 10.1080/16742834.2019.1586267