[1] Barnes, E. A., E. Dunn-Sigouin, G. Masato, et al., 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638–644. doi: 10.1002/2013GL058745
[2] Barriopedro, D., R. García-Herrera, A. R. Lupo, et al., 2006: A climatology of Northern Hemisphere blocking. J. Climate, 19, 1042–1063. doi: 10.1175/JCLI3678.1
[3] Barriopedro, D., R. García-Herrera, and R. M. Trigo, 2010: Application of blocking diagnosis methods to General Circulation Models. Part I: a novel detection scheme. Climate Dyn., 35, 1373–1391. doi: 10.1007/s00382-010-0767-5
[4] Bueh, C., X.-Y. Fu, and Z.-W. Xie, 2011a: Large-scale circulation features typical of wintertime extensive and persistent low temperature events in China. Atmos. Oceanic Sci. Lett., 4, 235–241. doi: 10.1080/16742834.2011.11446935
[5] Bueh, C., N. Shi, and Z. W. Xie, 2011b: Large-scale circulation anomalies associated with persistent low temperature over Southern China in January 2008. Atmos. Sci. Lett., 12, 273–280. doi: 10.1002/asl.333
[6] Cai, M., and M. Mak, 1990: Symbiotic relation between planetary and synoptic-scale waves. J. Atmos. Sci., 47, 2953–2968. doi: 10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2
[7] Cai, M., S. Yang, H. M. Van Den Dool, et al., 2007: Dynamical implications of the orientation of atmospheric eddies: a local energetics perspective. Tellus A, 59, 127–140. doi: 10.1111/j.1600-0870.2006.00213.x
[8] Cheung, H. N., W. Zhou, Y. P. Shao, et al., 2013: Observational climatology and characteristics of wintertime atmospheric blocking over Ural–Siberia. Climate Dyn., 41, 63–79. doi: 10.1007/s00382-012-1587-6
[9] Colucci, S. J., 1985: Explosive cyclogenesis and large-scale circulation changes: Implications for atmospheric blocking. J. Atmos. Sci., 42, 2701–2717. doi: 10.1175/1520-0469(1985)042<2701:ECALSC>2.0.CO;2
[10] Dai, X. L., Y. Zhang, and X.-Q. Yang, 2021: The budget of local available potential energy of low-frequency eddies in Northern Hemispheric winter. J. Climate, 34, 1241–1258. doi: 10.1175/JCLI-D-19-1007.1
[11] Deng, Y., and M. Mak, 2005: An idealized model study relevant to the dynamics of the midwinter minimum of the Pacific storm track. J. Atmos. Sci., 62, 1209–1225. doi: 10.1175/JAS3400.1
[12] Dole, R. M., and N. D. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 1567–1586. doi: 10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2
[13] Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022. doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
[14] Green, J. S. A., 1977: The weather during July 1976: Some dynamical considerations of the drought. Weather, 32, 120–126. doi: 10.1002/j.1477-8696.1977.tb04532.x
[15] Hansen, A. R., and T.-C. Chen, 1982: A spectral energetics analysis of atmospheric blocking. Mon. Wea. Rev., 110, 1146–1165. doi: 10.1175/1520-0493(1982)110<1146:ASEAOA>2.0.CO;2
[16] Hansen, A. R., and A. Sutera, 1984: A comparison of the spectral energy and enstrophy budgets of blocking versus nonblocking periods. Tellus A, 36, 52–63. doi: 10.3402/tellusa.v36i1.11465
[17] Holopainen, E., and C. Fortelius, 1987: High-frequency transient eddies and blocking. J. Atmos. Sci., 44, 1632–1645. doi: 10.1175/1520-0469(1987)044<1632:HFTEAB>2.0.CO;2
[18] Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707. doi: 10.1029/2008GL037079
[19] Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595–1612. doi: 10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2
[20] Huang, C. S. Y., and N. Nakamura, 2016: Local finite-amplitude wave activity as a diagnostic of anomalous weather events. J. Atmos. Sci., 73, 211–229. doi: 10.1175/JAS-D-15-0194.1
[21] Illari, L., and J. C. Marshall, 1983: On the interpretation of eddy fluxes during a blocking episode. J. Atmos. Sci., 40, 2232–2242. doi: 10.1175/1520-0469(1983)040<2232:OTIOEF>2.0.CO;2
[22] Jiang, T. Y., Y. Deng, and W. H. Li, 2013: Local kinetic energy budget of high-frequency and intermediate-frequency eddies: winter climatology and interannual variability. Climate Dyn., 41, 961–976. doi: 10.1007/s00382-013-1684-1
[23] Joung, C. H., and M. H. Hitchman, 1982: On the role of successive downstream development in East Asian polar air outbreaks. Mon. Wea. Rev., 110, 1224–1237. doi: 10.1175/1520-0493(1982)110<1224:OTROSD>2.0.CO;2
[24] Kobayashi, S., Y. Ota, Y. Harada, et al., 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48. doi: 10.2151/jmsj.2015-001
[25] Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 2009–2030. doi: 10.1256/qj.05.204
[26] Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 5085–5108. doi: 10.1175/2010JCLI3413.1
[27] Kosaka, Y., H. Nakamura, M. Watanabe, et al., 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561–580. doi: 10.2151/jmsj.87.561
[28] Lau, N.-C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313–328. doi: 10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2
[29] Li, S. L., 2004: Impact of northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter. J. Meteor. Soc. Japan, 82, 971–988. doi: 10.2151/jmsj.2004.971
[30] Li, Y., Y. Lu, and C. H. Wang, 2020: Characteristics of thermal and momentum transport during the lifetime of Ural blocking highs. Int. J. Climatol., 40, 77–93. doi: 10.1002/joc.6195
[31] Liang, X. S., 2016: Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres. J. Atmos. Sci., 73, 4439–4468. doi: 10.1175/JAS-D-16-0131.1
[32] Liu, J. P., J. A. Curry, H. J. Wang, et al., 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 4074–4079. doi: 10.1073/pnas.1114910109
[33] Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167. doi: 10.3402/tellusa.v7i2.8796
[34] Lu, R. Y., and R. H. Huang, 1996: Energetics examination of the blocking episodes in the Northern Hemisphere. Chinese J. Atmos. Sci., 20, 269–278. (in Chinese) doi: 10.3878/j.issn.1006-9895.1996.03.02
[35] Luo, D. H., 2000: Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies. Dyn. Atmos. Oceans, 32, 27–74. doi: 10.1016/S0377-0265(99)00018-4
[36] Luo, D. H., 2005: A barotropic envelope Rossby soliton model for block–eddy interaction. Part I: Effect of topography. J. Atmos. Sci., 62, 5–21. doi: 10.1175/1186.1
[37] Luo, D. H., A. R. Lupo, and H. Wan, 2007: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 3–28. doi: 10.1175/JAS3818.1
[38] Luo, D. H., J. Cha, L. H. Zhong, et al., 2014: A nonlinear multiscale interaction model for atmospheric blocking: The eddy-blocking matching mechanism. Quart. J. Roy. Meteor. Soc., 140, 1785–1808. doi: 10.1002/qj.2337
[39] Luo, D. H., Y. Yao, and A. G. Dai, 2015: Decadal relationship between European blocking and the North Atlantic Oscillation during 1978–2011. Part II: A theoretical model study. J. Atmos. Sci., 72, 1174–1199. doi: 10.1175/JAS-D-14-0040.1
[40] Luo, D. H., Y. Q. Xiao, Y. Yao, et al., 2016a: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 3925–3947. doi: 10.1175/JCLI-D-15-0611.1
[41] Luo, D. H., Y. Q. Xiao, Y. N. Diao, et al., 2016b: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation. J. Climate, 29, 3949–3971. doi: 10.1175/JCLI-D-15-0612.1
[42] Luo, D. H., Y. Yao, A. G. Dai, et al., 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part II: A theoretical explanation. J. Climate, 30, 3569–3587. doi: 10.1175/JCLI-D-16-0262.1
[43] Luo, D. H., X. D. Chen, A. G. Dai, et al., 2018: Changes in atmospheric blocking circulations linked with winter Arctic warming: A new perspective. J. Climate, 31, 7661–7678. doi: 10.1175/JCLI-D-18-0040.1
[44] Luo, D. H., W. Q. Zhang, L. H. Zhong, et al., 2019: A nonlinear theory of atmospheric blocking: A potential vorticity gradient view. J. Atmos. Sci., 76, 2399–2427. doi: 10.1175/JAS-D-18-0324.1
[45] Lupo, A. R., and P. J. Smith, 1995: Climatological features of blocking anticyclones in the Northern Hemisphere. Tellus A, 47, 439–456. doi: 10.3402/tellusa.v47i4.11527
[46] Ma, J. W., and X. S. Liang, 2017: Multiscale dynamical processes underlying the wintertime Atlantic blockings. J. Atmos. Sci., 74, 3815–3831. doi: 10.1175/JAS-D-16-0295.1
[47] Mak, M., and M. Cai, 1989: Local barotropic instability. J. Atmos. Sci., 46, 3289–3311. doi: 10.1175/1520-0469(1989)046<3289:LBI>2.0.CO;2
[48] Matsueda, M., and T. N. Palmer, 2018: Estimates of flow-dependent predictability of wintertime Euro-Atlantic weather regimes in medium-range forecasts. Quart. J. Roy. Meteor. Soc., 144, 1012–1027. doi: 10.1002/qj.3265
[49] Mori, M., M. Watanabe, H. Shiogama, et al., 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869–873. doi: 10.1038/ngeo2277
[50] Mori, M., Y. Kosaka, M. Watanabe, et al., 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Climate Change, 9, 123–129. doi: 10.1038/s41558-018-0379-3
[51] Mullen, S. L., 1987: Transient eddy forcing of blocking flows. J. Atmos. Sci., 44, 3–22. doi: 10.1175/1520-0469(1987)044<0003:TEFOBF>2.0.CO;2
[52] Nakamura, H., 1994: Rotational evolution of potential vorticity associated with a strong blocking flow configuration over Europe. Geophys. Res. Lett., 21, 2003–2006. doi: 10.1029/94GL01614
[53] Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quart. J. Roy. Meteor. Soc., 130, 1213–1233. doi: 10.1256/qj.03.101
[54] Nakamura, H., M. Tanaka, and J. M. Wallace, 1987: Horizontal structure and energetics of Northern Hemisphere wintertime teleconnection patterns. J. Atmos. Sci., 44, 3377–3391. doi: 10.1175/1520-0469(1987)044<3377:HSAEON>2.0.CO;2
[55] Nakamura, H., M. Nakamura, and J. L. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 2074–2093. doi: 10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2
[56] Nakamura, N., and C. S. Y. Huang, 2018: Atmospheric blocking as a traffic jam in the jet stream. Science, 361, 42–47. doi: 10.1126/science.aat0721
[57] Overland, J. E., and M. Y. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A, 62, 1–9. doi: 10.1111/j.1600-0870.2009.00421.x
[58] Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743–755. doi: 10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2
[59] Pfahl, S., C. Schwierz, M. Croci-Maspoli, et al., 2015: Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci., 8, 610–614. doi: 10.1038/ngeo2487
[60] Schwierz, C., M. Croci-Maspoli, and H. C. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125. doi: 10.1029/2003GL019341
[61] Shi, N., X. Q. Wang, L. Y. Zhang, et al., 2016: Features of Rossby wave propagation associated with the evolution of summertime blocking highs with different configurations over northeast Asia. Mon. Wea. Rev., 144, 2531–2546. doi: 10.1175/MWR-D-15-0369.1
[62] Shi, N., SuolangTajie, P. Y. Tian, et al., 2020: Contrasting relationship between wintertime blocking highs over Europe–Siberia and temperature anomalies in the Yangtze River basin. Mon. Wea. Rev., 148, 2953–2970. doi: 10.1175/MWR-D-19-0152.1
[63] Shutts, G. J., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quart. J. Roy. Meteor. Soc., 109, 737–761. doi: 10.1002/qj.49710946204
[64] Simmons, A. J., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 1363–1392. doi: 10.1175/1520-0469(1983)040<1363:BWPAIA>2.0.CO;2
[65] Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627. doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
[66] Takaya, K., and H. Nakamura, 2005: Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 62, 4423–4440. doi: 10.1175/JAS3629.1
[67] Tanaka, S., K. Nishii, and H. Nakamura, 2016: Vertical structure and energetics of the western Pacific teleconnection pattern. J. Climate, 29, 6597–6616. doi: 10.1175/JCLI-D-15-0549.1
[68] Tao, S. Y., 1957: A Study of Activities of Cold Airs in East Asian Winter, Handbook of Short-Term Forecast. Meteorology Press, Beijing, 60–92. (in Chinese)
[69] Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus A, 42, 343–365. doi: 10.3402/tellusa.v42i3.11882
[70] Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 2070–2087. doi: 10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2
[71] Wang, L., and W. Chen, 2014: The East Asian winter monsoon: re-amplification in the mid-2000s. Chinese Sci. Bull., 59, 430–436. doi: 10.1007/s11434-013-0029-0
[72] Wang, M. L., Y. Zhang, and J. Lu, 2021: The evolution dynamical processes of Ural blocking through the lens of local finite-amplitude wave activity budget analysis. Geophys. Res. Lett., 48, e2020GL091727. doi: 10.1029/2020GL091727
[73] Wen, M., S. Yang, A. Kumar, et al., 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 1111–1131. doi: 10.1175/2008MWR2638.1
[74] Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 2263–2273. doi: 10.1175/BAMS-D-15-00267.1
[75] Woollings, T., D. Barriopedro, J. Methven, et al., 2018: Blocking and its response to climate change. Curr. Clim. Change Rep., 4, 287–300. doi: 10.1007/s40641-018-0108-z
[76] Yao, Y., D. H. Luo, A. G. Dai, et al., 2017: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses. J. Climate, 30, 3549–3568. doi: 10.1175/JCLI-D-16-0261.1
[77] Zhou, W., J. C. L. Chan, W. Chen, et al., 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 3978–3991. doi: 10.1175/2009MWR2952.1
[78] Zhuge, A. R., and B. K. Tan, 2021a: The springtime western Pacific pattern: Its formation and maintenance mechanisms and climate impacts. J. Climate, 34, 4913–4936. doi: 10.1175/JCLI-D-20-0051.1
[79] Zhuge, A. R., and B. K. Tan, 2021b: The zonal North Pacific Oscillation: a high-impact atmospheric teleconnection pattern influencing the North Pacific and North America. Environ. Res. Lett., 16, 074007. doi: 10.1088/1748-9326/ac037b