[1] Abdillah, M. R., Y. Kanno, and T. Iwasaki, 2017: Tropical–extratropical interactions associated with East Asian cold air outbreaks. Part I: Interannual variability. J. Climate, 30, 2989–3007. doi: 10.1175/jcli-d-16-0152.1
[2] Adames, Á. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 2007–2026. doi: 10.1175/JAS-D-13-0254.1
[3] Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
[4] Aldrian, E., and R. D. Susanto, 2003: Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol., 23, 1435–1452. doi: 10.1002/joc.950
[5] Aldrian, E., L. Dümenil Gates, and F. H. Widodo, 2007: Seasonal variability of Indonesian rainfall in ECHAM4 simulations and in the reanalyses: The role of ENSO. Theor. Appl. Climatol., 87, 41–59. doi: 10.1007/s00704-006-0218-8
[6] Allen, M. R., and L. A. Smith, 1997: Optimal filtering in singular spectrum analysis. Phys. Lett., 234, 419–428. doi: 10.1016/S0375-9601(97)00559-8
[7] Arakawa, O., and A. Kitoh, 2005: Rainfall diurnal variation over the Indonesian Maritime Continent simulated by 20 km-mesh GCM. SOLA, 1, 109–112. doi: 10.2151/sola.2005-029
[8] Argüeso, D., A. Di Luca, and J. P. Evans, 2016: Precipitation over urban areas in the western Maritime Continent using a convection-permitting model. Climate Dyn., 47, 1143–1159. doi: 10.1007/s00382-015-2893-6
[9] Ashok, K., Z. Y. Guan, and T. Yamagata, 2003: Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett., 30, 1821. doi: 10.1029/2003GL017926
[10] Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007. doi: 10.1029/2006JC003798
[11] As-syakur, A. R., I. W. S. Adnyana, M. S. Mahendra, et al., 2014: Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). Int. J. Climatol., 34, 3825–3839. doi: 10.1002/joc.3939
[12] As-syakur, A. R., T. Osawa, F. Miura, et al., 2016: Maritime Continent rainfall variability during the TRMM era: The role of monsoon, topography and El Niño Modoki. Dyn. Atms. Ocea., 75, 58–77. doi: 10.1016/j.dynatmoce.2016.05.004
[13] Bao, M., and D. L. Hartmann, 2014: The response to MJO-like forcing in a nonlinear shallow-water model. Geophys. Res. Lett., 41, 1322–1328. doi: 10.1002/2013GL057683
[14] Birch, C. E., S. Webster, S. C. Peatman, et al., 2016: Scale interactions between the MJO and the western Maritime Continent. J. Climate, 29, 2471–2492. doi: 10.1175/jcli-d-15-0557.1
[15] Burleyson, C. D., S. M. Hagos, Z. Feng, et al., 2018: Large-scale environmental characteristics of MJOs that strengthen and weaken over the Maritime Continent. J. Climate, 31, 5731–5748. doi: 10.1175/jcli-d-17-0576.1
[16] Chang, C.-P., and K. M. W. Lau, 1980: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects. Mon. Wea. Rev., 108, 298–312. doi: 10.1175/1520-0493(1980)108<0298:Ncsane>2.0.Co;2
[17] Chang, C.-P., and K. M. Lau, 1982: Short-term planetary-scale interactions over the tropics and midlatitudes during northern winter. Part I: Contrasts between active and inactive periods. Mon. Wea. Rev., 110, 933–946. doi: 10.1175/1520-0493(1982)110<0933:Stpsio>2.0.Co;2
[18] Chang, C.-P., J. E. Erickson, and K. M. Lau, 1979: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part I: Synoptic aspects. Mon. Wea. Rev., 107, 812–829. doi: 10.1175/1520-0493(1979)107<0812:Ncsane>2.0.Co;2
[19] Chang, C.-P., Z. Wang, J. H. Ju, et al., 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665–672. doi: 10.1175/1520-0442(2004)017<0665:Otrbwm>2.0.Co;2
[20] Chang, C.-P., P. A. Harr, and H.-J. Chen, 2005a: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Wea. Rev., 133, 489–503. doi: 10.1175/mwr-2868.1
[21] Chang, C.-P., Z. Wang, J. McBride, et al., 2005b: Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287–301. doi: 10.1175/jcli-3257.1
[22] Chang, P., R. Saravanan, L. Ji, et al., 2000: The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J. Climate, 13, 2195–2216. doi: 10.1175/1520-0442(2000)013<2195:TEOLSS>2.0.CO;2
[23] Charney, J. G., and J. Shukla, 1981: Predictability of monsoons. Monsoon Dynamics. Sir J. Lighthill, and R. P. Pearce, Cambridge University Press, Cambridge, UK, 99–110 pp.
[24] Chen, J. W., Y. Deng, J. F. Wang, et al., 2017: Hindcasting the Madden–Julian Oscillation with a new parameterization of surface heat fluxes. J. Adv. Model. Earth Syst., 9, 2696–2709. doi: 10.1002/2017MS001175
[25] Chen, T.-C., J.-D. Tsay, J. Matsumoto, et al., 2015a: Development and formation mechanism of the Southeast Asian winter heavy rainfall events around the South China Sea. Part I: Formation and propagation of cold surge vortex. J. Climate, 28, 1417–1443. doi: 10.1175/jcli-d-14-00170.1
[26] Chen, T.-C., J.-D. Tsay, and J. Matsumoto, 2015b: Development and formation mechanism of the Southeast Asian winter heavy rainfall events around the South China Sea. Part II: Multiple interactions. J. Climate, 28, 1444–1464. doi: 10.1175/jcli-d-14-00171.1
[27] Ciesielski, P. E., and R. H. Johnson, 2006: Contrasting characteristics of convection over the northern and southern South China Sea during SCSMEX. Mon. Wea. Rev., 134, 1041–1062. doi: 10.1175/mwr3113.1
[28] Collier, J. C., and K. P. Bowman, 2004: Diurnal cycle of tropical precipitation in a general circulation model. J. Geophys. Res. Atmos., 109, D17105. doi: 10.1029/2004JD004818
[29] Compo, G. P., G. N. Kiladis, and P. J. Webster, 1999: The horizontal and vertical structure of East Asian winter monsoon pressure surges. Quart. J. Roy. Meteor. Soc., 125, 29–54. doi: 10.1002/qj.49712555304
[30] Cronin, T. W., K. A. Emanuel, and P. Molnar, 2015: Island precipitation enhancement and the diurnal cycle in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 141, 1017–1034. doi: 10.1002/qj.2443
[31] Crueger, T., B. Stevens, and R. Brokopf, 2013: The Madden–Julian Oscillation in ECHAM6 and the introduction of an objective MJO metric. J. Climate, 26, 3241–3257. doi: 10.1175/JCLI-D-12-00413.1
[32] Dee, D. P., S. M. Uppala, A. J. Simmon, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[33] Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 2324–2340. doi: 10.1175/1520-0469(1987)044<2324:Aasimo>2.0.Co;2
[34] Feng, J., L. Wang, W. Chen, et al., 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res. Atmos., 115, D24122. doi: 10.1029/2010JD014761
[35] Feng, J., T. Li, and W. J. Zhu, 2015: Propagating and nonpropagating MJO events over Maritime Continent. J. Climate, 28, 8430–8449. doi: 10.1175/jcli-d-15-0085.1
[36] Gianotti, R. L., D. F. Zhang, and E. A. B. Eltahir, 2012: Assessment of the regional climate model version 3 over the Maritime Continent using different cumulus parameterization and land surface schemes. J. Climate, 25, 638–656. doi: 10.1175/jcli-d-11-00025.1
[37] Hagos, S. M., C. D. Zhang, Z. Feng, et al., 2016: The impact of the diurnal cycle on the propagation of Madden–Julian Oscillation convection across the Maritime Continent. J. Adv. Model. Earth Syst., 8, 1552–1564. doi: 10.1002/2016MS000725
[38] Hamada, J.-I., M. D. Yamanaka, J. Matsumoto, et al., 2002: Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J. Meteor. Soc. Japan, 80, 285–310. doi: 10.2151/jmsj.80.285
[39] Hamada, J.-I., S. Mori, H. Kubota, et al., 2012: Interannual rainfall variability over northwestern Jawa and its relation to the Indian Ocean Dipole and El Niño–Southern Oscillation events. SOLA, 8, 69–72. doi: 10.2151/sola.2012-018
[40] Hara, M., T. Yoshikane, H. G. Takahashi, et al., 2009: Assessment of the diurnal cycle of precipitation over the Maritime Continent simulated by a 20 km mesh GCM using TRMM PR data. J. Meteor. Soc. Japan, 87A, 413–424. doi: 10.2151/jmsj.87A.413
[41] Haylock, M., and J. McBride, 2001: Spatial coherence and predictability of Indonesian wet season rainfall. J. Climate, 14, 3882–3887. doi: 10.1175/1520-0442(2001)014<3882:Scapoi>2.0.Co;2
[42] Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 1775–1790. doi: 10.1175/1520-0442(2003)016<1775:Irvioe>2.0.Co;2
[43] Hidayat, R., and S. Kizu, 2010: Influence of the Madden–Julian Oscillation on Indonesian rainfall variability in austral summer. Int. J. Climatol., 30, 1816–1825. doi: 10.1002/joc.2005
[44] Holland, G. J., and T. D. Keenan, 1980: Diurnal variations of convection over the " Maritime Continent”. Mon. Wea. Rev., 108, 223–225. doi: 10.1175/1520-0493(1980)108<0223:Dvocot>2.0.Co;2
[45] Hou, A. Y., R. K. Kakar, S. Neeck, et al., 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701–722. doi: 10.1175/bams-d-13-00164.1
[46] Hsu, H.-H., and M.-Y. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden–Julian Oscillation. J. Climate, 18, 795–809. doi: 10.1175/jcli-3292.1
[47] Huang, B., 2004: Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn., 23, 133–152. doi: 10.1007/s00382-004-0443-8
[48] Hung, C.-W., X. D. Liu, and M. Yanai, 2004: Symmetry and asymmetry of the Asian and Australian summer monsoons. J. Climate, 17, 2413–2426. doi: 10.1175/1520-0442(2004)017<2413:Saaota>2.0.Co;2
[49] Im, E.-S., and E. A. B. Eltahir, 2018: Simulation of the diurnal variation of rainfall over the western Maritime Continent using a regional climate model. Climate Dyn., 51, 73–88. doi: 10.1007/s00382-017-3907-3
[50] Inness, P. M., and J. M. Slingo, 2006: The interaction of the Madden–Julian Oscillation with the Maritime Continent in a GCM. Quart. J. Roy. Meteor. Soc., 132, 1645–1667. doi: 10.1256/qj.05.102
[51] Jia, X. J., J. W. Ge, and S. Wang, 2016: Diverse impacts of ENSO on wintertime rainfall over the Maritime Continent. Int. J. Climatol., 36, 3384–3397. doi: 10.1002/joc.4562
[52] Jiang, L. S., and T. Li, 2018: Why rainfall response to El Niño over Maritime Continent is weaker and non-uniform in boreal winter than in boreal summer. Climate Dyn., 51, 1465–1483. doi: 10.1007/s00382-017-3965-6
[53] Jiang, X. W., S. Yang, Y. Q. Li, et al., 2013: Dynamical prediction of the East Asian winter monsoon by the NCEP Climate Forecast System. J. Geophys. Res. Atmos., 118, 1312–1328. doi: 10.1002/jgrd.50193
[54] Jiang, X. W., J. C. Shu, X. Wang, et al., 2017: The roles of convection over the western Maritime Continent and the Philippine Sea in interannual variability of summer rainfall over southwest China. J. Hydrometeor., 18, 2043–2056. doi: 10.1175/jhm-d-16-0292.1
[55] Johnson, S. J., R. C. Levine, A. G. Turner, et al., 2016: The resolution sensitivity of the South Asian monsoon and Indo–Pacific in a global 0.35° AGCM. Climate Dyn., 46, 807–831. doi: 10.1007/s00382-015-2614-1
[56] Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632. doi: 10.1175/2008JCLI2309.1
[57] Keenan, T., S. Rutledge, R. Carbone, et al., 2000: The Maritime Continent—Thunderstorm Experiment (MCTEX): Overview and some results. Bull. Amer. Meteor. Soc., 81, 2433–2456. doi: 10.1175/1520-0477(2000)081<2433:Tmctem>2.3.Co;2
[58] Kerns, B. W., and S. S. Chen, 2016: Large-scale precipitation tracking and the MJO over the Maritime Continent and Indo–Pacific warm pool. J. Geophys. Res. Atmos., 121, 8755–8776. doi: 10.1002/2015JD024661
[59] Kida, S., and K. J. Richards, 2009: Seasonal sea surface temperature variability in the Indonesian Seas. J. Geophys. Res. Oceans, 114, C06016. doi: 10.1029/2008JC005150
[60] Kim, D., H. Kim, and M.-I. Lee, 2017: Why does the MJO detour the Maritime Continent during austral summer? Geophys. Res. Lett., 44, 2579–2587. doi: 10.1002/2017GL072643
[61] Kim, H.-M., P. J. Webster, V. E. Toma, et al., 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 5364–5378. doi: 10.1175/jcli-d-13-00480.1
[62] Kim, H.-M., D. Kim, F. Vitart, et al., 2016: MJO propagation across the Maritime Continent in the ECMWF ensemble prediction system. J. Climate, 29, 3973–3988. doi: 10.1175/jcli-d-15-0862.1
[63] Kubota, H., R. Shirooka, J.-I. Hamada, et al., 2011: Interannual rainfall variability over the eastern Maritime Continent. J. Meteor. Soc. Japan, 89A, 111–122. doi: 10.2151/jmsj.2011-A07
[64] Kumar, A., M. Y. Chen, and W. Q. Wang, 2013: Understanding prediction skill of seasonal mean precipitation over the tropics. J. Climate, 26, 5674–5681. doi: 10.1175/jcli-d-12-00731.1
[65] Lau, K.-M., and P. H. Chan, 1983a: Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part I: Simultaneous relationships. J. Atmos. Sci., 40, 2735–2750. doi: 10.1175/1520-0469(1983)040<2735:Stcvaa>2.0.Co;2
[66] Lau, K.-M., and P. H. Chan, 1983b: Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part II: Lagged correlations. J. Atmos. Sci., 40, 2751–2767. doi: 10.1175/1520-0469(1983)040<2751:Stcvaa>2.0.Co;2
[67] Lau, K.-M., C.-P. Chang, and P. H. Chan, 1983: Short-term planetary-scale interactions over the tropics and midlatitudes. Part II: Winter-MONEX period. Mon. Wea. Rev., 111, 1372–1388. doi: 10.1175/1520-0493(1983)111<1372:Stpsio>2.0.Co;2
[68] Lau, K. M., and J. S. Boyle, 1987: Tropical and extratropical forcing of the large-scale circulation: A diagnostic study. Mon. Wea. Rev., 115, 400–428. doi: 10.1175/1520-0493(1987)115<0400:Taefot>2.0.Co;2
[69] Lau, N.-C., and K.-M. Lau, 1984: The structure and energetics of midlatitude disturbances accompanying cold-air outbreaks over East Asia. Mon. Wea. Rev., 112, 1309–1327. doi: 10.1175/1520-0493(1984)112<1309:Tsaeom>2.0.Co;2
[70] Li, Q. P., S. Yang, T. W. Wu, et al., 2017: Subseasonal dynamical prediction of East Asian cold surges. Wea. Forecasting, 32, 1675–1694. doi: 10.1175/WAF-D-16-0209.1
[71] Li, Y., N. C. Jourdain, A. S. Taschetto, et al., 2017: Resolution dependence of the simulated precipitation and diurnal cycle over the Maritime Continent. Climate Dyn., 48, 4009–4028. doi: 10.1007/s00382-016-3317-y
[72] Li, Z. N., S. Yang, X. M. Hu, et al., 2018: Charge in long-lasting El Niño events by convection-induced wind anomalies over the western Pacific in boreal spring. J. Climate, 31, 3755–3763. doi: 10.1175/JCLI-D-17-0558.1
[73] Liang, J. Y., S. Yang, Z.-Z. Hu, et al., 2009: Predictable patterns of the Asian and Indo–Pacific summer precipitation in the NCEP CFS. Climate Dyn., 32, 989–1001. doi: 10.1007/s00382-008-0420-8
[74] Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden–Julian Oscillation in two canadian atmospheric models. Mon. Wea. Rev., 136, 4130–4149. doi: 10.1175/2008mwr2459.1
[75] LinHo, and B. Wang, 2002: The time–space structure of the Asian–Pacific summer monsoon: A fast annual cycle view. J. Climate, 15, 2001–2019. doi: 10.1175/1520-0442(2002)015<2001:Ttssot>2.0.Co;2
[76] Liu, X. W., S. Yang, J. L. Li, et al., 2015: Subseasonal predictions of regional summer monsoon rainfall over tropical Asian oceans and land. J. Climate, 28, 9583–9605. doi: 10.1175/JCLI-D-14-00853.1
[77] Love, B. S., A. J. Matthews, and G. M. S. Lister, 2011: The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934–947. doi: 10.1002/qj.809
[78] Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123. doi: 10.1175/1520-0469(1972)029<1109:Dogscc>2.0.Co;2
[79] Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837. doi: 10.1175/1520-0493(1994)122<0814:Ootdto>2.0.Co;2
[80] Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 4368–4386. doi: 10.1175/jcli-3212.1
[81] Mapes, B., and R. A. Jr. Houze, 1992: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. I: Horizontal structure. Quart. J. Roy. Meteor. Soc., 118, 927–963. doi: 10.1002/qj.49711850706
[82] Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern south America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830–844. doi: 10.1175/1520-0493(2003)131<0830:Dporin>2.0.Co;2
[83] Matsumoto, J., 1992: The seasonal changes in Asian and Australian Monsoon regions. J. Meteor. Soc. Japan, 70, 257–273. doi: 10.2151/jmsj1965.70.1B_257
[84] Matsumoto, J., and T. Murakami, 2000: Annual changes of tropical convective activities as revealed from equatorially symmetric OLR data. J. Meteor. Soc. Japan, 78, 543–561. doi: 10.2151/jmsj1965.78.5_543
[85] Matsumoto, J., and T. Murakami, 2002: Seasonal migration of monsoons between the Northern and Southern Hemisphere as revealed from equatorially symmetric and asymmetric OLR data. J. Meteor. Soc. Japan, 80, 419–437. doi: 10.2151/jmsj.80.419
[86] McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111, 1998–2004. doi: 10.1175/1520-0493(1983)111<1998:Srbara>2.0.Co;2
[87] McBride, J. L., M. R. Haylock, and N. Nicholls, 2003: Relationships between the Maritime Continent heat source and the El Niño–Southern Oscillation phenomenon. J. Climate, 16, 2905–2914. doi: 10.1175/1520-0442(2003)016<2905:Rbtmch>2.0.Co;2
[88] Meehl, G. A., 1987: The annual cycle and interannual variability in the tropical Pacific and Indian Ocean regions. Mon. Wea. Rev., 115, 27–50. doi: 10.1175/1520-0493(1987)115<0027:Tacaiv>2.0.Co;2
[89] Miura, H., M. Satoh, T. Nasuno, et al., 2007: A Madden–Julian Oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 1763–1765. doi: 10.1126/science.1148443
[90] Moorthi, S., and M. J. Suarez, 1999: Documentation of Version 2 of Relaxed Arakawa–Schubert Cumulus Parameterization with Convective Downdrafts. NOAA Office Note 99–01, NOAA, Washington DC, 44 pp.
[91] Mori, S., H. Jun-Ichi, Y. I. Tauhid, et al., 2004: Diurnal land–sea rainfall peak migration over Sumatera island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 2021–2039. doi: 10.1175/1520-0493(2004)132<2021:Dlrpmo>2.0.Co;2
[92] Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834–848. doi: 10.1175/1520-0442(2003)016<0834:Tmcair>2.0.Co;2
[93] Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341–2348. doi: 10.1175/1520-0469(1987)044<2341:Ewfalf>2.0.Co;2
[94] Neelin, J. D., D. S. Battisti, A. C. Hirst, et al., 1998: ENSO theory. J. Geophys. Res. Oceans, 103, 14261–14290. doi: 10.1029/97JC03424
[95] Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456–1475. doi: 10.1175/1520-0442-16.10.1456
[96] Nguyen, H., C. Franklin, and A. Protat, 2017: Understanding the ACCESS model errors over the Maritime Continent using CloudSat and CALIPSO simulators. Quart. J. Roy. Meteor. Soc., 143, 3136–3152. doi: 10.1002/qj.3168
[97] Oh, J.-H., K.-Y. Kim, and G.-H. Lim, 2012: Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dyn., 38, 1167–1180. doi: 10.1007/s00382-011-1237-4
[98] Oh, J.-H., B.-M. Kim, K.-Y. Kim, et al., 2013: The impact of the diurnal cycle on the MJO over the Maritime Continent: A modeling study assimilating TRMM rain rate into global analysis. Climate Dyn., 40, 893–911. doi: 10.1007/s00382-012-1419-8
[99] Pan, H.-L., and W.-S. Wu, 1995: Implementing a Mass Flux Convection Parameterization Package for the NMC Medium-Range Forecast Model. NMC Office Note No. 409, NOAA NWS, Silver Spring, MD, USA, 42 pp.
[100] Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 68–83. doi: 10.1175/2010JCLI3529.1
[101] Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian Oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814–825. doi: 10.1002/qj.2161
[102] Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2015: Propagation of the Madden–Julian Oscillation and scale interaction with the diurnal cycle in a high-resolution GCM. Climate Dyn., 45, 2901–2918. doi: 10.1007/s00382-015-2513-5
[103] Qian, J.-H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 1428–1441. doi: 10.1175/2007jas2422.1
[104] Qian, J.-H., A. W. Robertson, and V. Moron, 2010: Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. J. Atmos. Sci., 67, 3509–3524. doi: 10.1175/2010jas3348.1
[105] Qian, J.-H., A. W. Robertson, and V. Moron, 2013: Diurnal cycle in different weather regimes and rainfall variability over Borneo associated with ENSO. J. Climate, 26, 1772–1790. doi: 10.1175/jcli-d-12-00178.1
[106] Ramage, C. S., 1968: Role of a tropical " Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365–370. doi: 10.1175/1520-0493(1968)096<0365:Roatmc>2.0.Co;2
[107] Rashid, H. A., and A. C. Hirst, 2017: Mechanisms of improved rainfall simulation over the Maritime Continent due to increased horizontal resolution in an AGCM. Climate Dyn., 49, 1747–1764. doi: 10.1007/s00382-016-3413-z
[108] Rauniyar, S. P., and K. J. E. Walsh, 2011: Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Climate, 24, 325–348. doi: 10.1175/2010jcli3673.1
[109] Rauniyar, S. P., and K. J. E. Walsh, 2013: Influence of ENSO on the diurnal cycle of rainfall over the Maritime Continent and Australia. J. Climate, 26, 1304–1321. doi: 10.1175/jcli-d-12-00124.1
[110] Ruti, P. M., D. Di Rocco, and S. Gualdi, 2006: Impact of increased vertical resolution on simulation of tropical climate. Theor. Appl. Climatol., 85, 61–80. doi: 10.1007/s00704-005-0174-8
[111] Saji, N. H., B. N. Goswami, P. N. Vinayachandran, et al., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363. doi: 10.1038/43854
[112] Salimun, E., F. Tangang, L. Juneng, et al., 2014: Differential impacts of conventional El Niño versus El Niño Modoki on Malaysian rainfall anomaly during winter monsoon. Int. J. Climatol., 34, 2763–2774. doi: 10.1002/joc.3873
[113] Schiemann, R., M.-E. Demory, M. S. Mizielinski, et al., 2014: The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution. Climate Dyn., 42, 2455–2468. doi: 10.1007/s00382-013-1997-0
[114] Seo, K.-H., and W. Q. Wang, 2010: The Madden–Julian Oscillation simulated in the NCEP Climate Forecast System model: The importance of stratiform heating. J. Climate, 23, 4770–4793. doi: 10.1175/2010jcli2983.1
[115] Seo, K.-H., W. Q. Wang, J. Gottschalck, et al., 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 2372–2388. doi: 10.1175/2008jcli2421.1
[116] Simpson, J., N. E. Westcott, R. J. Clerman, et al., 1980: On cumulus mergers. Arch. Meteor. Geophys. Bioklimatol. Ser. A, 29, 1–40. doi: 10.1007/bf02247731
[117] Simpson, J., T. D. Keenan, B. Ferrier, et al., 1993: Cumulus mergers in the Maritime Continent region. Meteor. Atmos. Phys., 51, 73–99. doi: 10.1007/bf01080881
[118] Slingo, J. M., 1998: Extratropical forcing of tropical convection in a northern winter simulation with the UGAMP GCM. Quart. J. Roy. Meteor. Soc., 124, 27–51. doi: 10.1002/qj.49712454503
[119] Sobel, A. H., E. D. Maloney, G. Bellon, et al., 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653–657. doi: 10.1038/ngeo312
[120] Sobel, A. H., C. D. Burleyson, and S. E. Yuter, 2011: Rain on small tropical islands. J. Geophys. Res. Atmos., 116, D08102. doi: 10.1029/2010JD014695
[121] Stuecker, M. F., A. Timmermann, F.-F. Jin, et al., 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540–544. doi: 10.1038/ngeo1826
[122] Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283–3287. doi: 10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2
[123] Sutton, R. T., S. P. Jewson, and D. P. Rowell, 2000: The elements of climate variability in the tropical Atlantic region. J. Climate, 13, 3261–3284. doi: 10.1175/1520-0442(2000)013<3261:TEOCVI>2.0.CO;2
[124] Tan, H. C., P. Ray, B. S. Barrett, et al., 2018: Role of topography on the MJO in the Maritime Continent: A numerical case study. Climate Dyn. . doi: 10.1007/s00382-018-4275-3
[125] Tanaka, M., 1994: The onset and retreat dates of the Austral summer monsoon over Indonesia, Australia and New Guinea. J. Meteor. Soc. Japan, 72, 255–267. doi: 10.2151/jmsj1965.72.2_255
[126] Teo, C.-K., T.-Y. Koh, J. C.-F. Lo, et al., 2011: Principal component analysis of observed and modeled diurnal rainfall in the Maritime Continent. J. Climate, 24, 4662–4675. doi: 10.1175/2011jcli4047.1
[127] Toh, Y. Y., A. G. Turner, S. J. Johnson, et al., 2018: Maritime Continent seasonal climate biases in AMIP experiments of the CMIP5 multimodel ensemble. Climate Dyn., 50, 777–800. doi: 10.1007/s00382-017-3641-x
[128] Tseng, W.-L., H.-H. Hsu, N. Keenlyside, et al., 2017: Effects of surface orography and land–sea contrast on the Madden–Julian Oscillation in the Maritime Continent: A numerical study using ECHAM5-SIT. J. Climate, 30, 9725–9741. doi: 10.1175/jcli-d-17-0051.1
[129] Tung, W.-W., D. Giannakis, and A. J. Majda, 2014: Symmetric and antisymmetric convection signals in the Madden–Julian Oscillation. Part I: Basic modes in infrared brightness temperature. J. Atmos. Sci., 71, 3302–3326. doi: 10.1175/jas-d-13-0122.1
[130] Venzke, S., M. R. Allen, R. T. Sutton, et al., 1999: The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. J. Climate, 12, 2562–2584. doi: 10.1175/1520-0442(1999)012<2562:TAROTN>2.0.CO;2
[131] Vincent, C. L., and T. P. Lane, 2016: Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian Oscillation event through the Maritime Continent. Mon. Wea. Rev., 144, 1983–2005. doi: 10.1175/mwr-d-15-0326.1
[132] Vitart, F., and F. Molteni, 2010: Simulation of the Madden–Julian Oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842–855. doi: 10.1002/qj.623
[133] Vitart, F., S. Woolnough, M. A. Balmaseda, et al., 2007: Monthly forecast of the Madden–Julian Oscillation using a coupled GCM. Mon. Wea. Rev., 135, 2700–2715. doi: 10.1175/MWR3415.1
[134] Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian Teleconnection: How does ENSO affect East Asian climate? J Climate, 13, 1517–1536. doi: 10.1175/1520-0442(2000)013<1517:Peathd>2.0.Co;2
[135] Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718–2722. doi: 10.1073/pnas.1214626110
[136] Wang, B., J.-Y. Lee, and B. Q. Xiang, 2015: Asian summer monsoon rainfall predictability: A predictable mode analysis. Climate Dyn., 44, 61–74. doi: 10.1007/s00382-014-2218-1
[137] Wang, M., Z. Y. Guan, and D. C. Jin, 2018: Two new sea surface temperature anomalies indices for capturing the eastern and central equatorial Pacific type El Niño–Southern Oscillation events during boreal summer. Int. J. Climatol., 38, 4066–4076. doi: 10.1002/joc.5552
[138] Wang, W. Q., M.-P. Hung, S. J. Weaver, et al., 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 2509–2520. doi: 10.1007/s00382-013-1806-9
[139] Wang, W. Q., A. Kumar, J. X. Fu, et al., 2015: What is the role of the sea surface temperature uncertainty in the prediction of tropical convection associated with the MJO? Mon. Wea. Rev., 143, 3156–3175. doi: 10.1175/mwr-d-14-00385.1
[140] Wang, Y. Q., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567–585. doi: 10.1175/mwr3308.1
[141] Weaver, S. J., W. Q. Wang, M. Y. Chen, et al., 2011: Representation of MJO variability in the NCEP climate forecast system. J. Climate, 24, 4676–4694. doi: 10.1175/2011jcli4188.1
[142] Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO Index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932. doi: 10.1175/1520-0493(2004)132<1917:Aarmmi>2.0.Co;2
[143] Wu, C.-H., and H.-H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 5433–5448. doi: 10.1175/2009jcli2825.1
[144] Wu, M. C., and J. C. L. Chan, 1995: Surface features of winter monsoon surges over South China. Mon. Wea. Rev., 123, 662–680. doi: 10.1175/1520-0493(1995)123<0662:Sfowms>2.0.Co;2
[145] Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
[146] Xu, Q., and Z. Y. Guan, 2017: Interannual variability of summertime outgoing longwave radiation over the Maritime Continent in relation to East Asian summer monsoon anomalies. J. Meteor. Res., 31, 665–677. doi: 10.1007/s13351-017-6178-3
[147] Xu, Q., Z. Y. Guan, D. C. Jin, et al., 2019: Regional characteristics of interannual variability of summer rainfall in the Maritime Continent and their related anomalous circulation patterns. J. Climate, 32, 4179–4192. doi: 10.1175/JCLI-D-18-0480.1
[148] Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784–801. doi: 10.1175/1520-0493(2001)129<0784:Tdcitt>2.0.Co;2
[149] Yasunari, T., 1991: The monsoon year — A new concept of the climatic year in the tropics. Bull. Amer. Meteor. Soc., 72, 1331–1338. doi: 10.1175/1520-0477(1991)072<1331:Tmynco>2.0.Co;2
[150] Zhang, C. D., and J. Ling, 2017: Barrier effect of the Indo–Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 3439–3459. doi: 10.1175/jcli-d-16-0614.1
[151] Zhang, C. D., M. Dong, S. Gualdi, et al., 2006: Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573–592. doi: 10.1007/s00382-006-0148-2
[152] Zhang, C. D., J. Gottschalck, E. D. Maloney, et al., 2013: Cracking the MJO nut. Geophys. Res. Lett., 40, 1223–1230. doi: 10.1002/grl.50244
[153] Zhang, T. T., S. Yang, X. W. Jiang, et al., 2016a: Roles of remote and local forcings in the variation and prediction of regional Maritime Continent rainfall in wet and dry seasons. J. Climate, 29, 8871–8879. doi: 10.1175/jcli-d-16-0417.1
[154] Zhang, T. T., S. Yang, X. W. Jiang, et al., 2016b: Sub-seasonal prediction of the Maritime Continent rainfall of wet–dry transitional seasons in the NCEP climate forecast version 2. Atmosphere, 7, 28. doi: 10.3390/atmos7020028
[155] Zhang, T. T., S. Yang, X. W. Jiang, et al., 2016c: Seasonal–interannual variation and prediction of wet and dry season rainfall over the Maritime Continent: Roles of ENSO and monsoon circulation. J. Climate, 29, 3675–3695. doi: 10.1175/jcli-d-15-0222.1
[156] Zhang, T. T., B. H. Huang, S. Yang, et al., 2018a: Predictable patterns of the atmospheric low-level circulation over the Indo–Pacific region in project Minerva: Seasonal dependence and intraensemble variability. J. Climate, 31, 8351–8379. doi: 10.1175/jcli-d-17-0577.1
[157] Zhang, T. T., B. H. Huang, S. Yang, et al., 2018b: Seasonal dependence of the predictable low-level circulation patterns over the tropical Indo–Pacific domain. Climate Dyn., 50, 4263–4284. doi: 10.1007/s00382-017-3874-8
[158] Zhang, T. T., B. H. Huang, S. Yang, et al., 2018c: Dynamical and thermodynamical influences of the Maritime Continent on ENSO evolution. Sci. Rep., 8, 15352. doi: 10.1038/s41598-018-33436-5
[159] Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 2605–2619. doi: 10.1175/1520-0493(1997)125<2605:Caivot>2.0.Co;2
[160] Zhao, S. Y., S. Yang, Y. Deng, et al., 2015: Skills of yearly prediction of the early-season rainfall over southern China by the NCEP Climate Forecast System. Theor. Appl. Climatol., 122, 743–754. doi: 10.1007/s00704-014-1333-6
[161] Zhu, J. S., W. Q. Wang, and A. Kumar, 2017: Simulations of MJO propagation across the Maritime Continent: Impacts of SST feedback. J. Climate, 30, 1689–1704. doi: 10.1175/jcli-d-16-0367.1