[1] Banerjee, A., G. Chiodo, M. Previdi, et al., 2019: Stratospheric water vapor: an important climate feedback. Climate Dyn., 53, 1697–1710. doi: 10.1007/s00382-019-04721-4
[2] Chandran, A., R. R. Garcia, R. L. Collins, et al., 2013: Secondary planetary waves in the middle and upper atmosphere following the stratospheric sudden warming event of January 2012. Geophys. Res. Lett., 40, 1861–1867. doi: 10.1002/grl.50373
[3] de F. Forster, P. M., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086. doi: 10.1029/2001GL013909
[4] Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[5] Dessler, A. E., M. R. Schoeberl, T. Wang, et al., 2013: Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110, 18,087–18,091. doi: 10.1073/pnas.1310344110
[6] Dessler, A. E., H. Ye, T. Wang, et al., 2016: Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century. Geophys. Res. Lett., 43, 2323–2329. doi: 10.1002/2016GL067991
[7] Flato, G., J. Marotzke, B. Abiodun, et al., 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 741–866, doi: 10.1017/CBO9781107415324.020.
[8] Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res. Atmos., 110, D24108. doi: 10.1029/2005JD006019
[9] Fueglistaler, S., M. Bonazzola, P. H. Haynes, et al., 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res. Atmos., 110, D08107. doi: 10.1029/2004JD005516
[10] Garcia, R. R., D. R. Marsh, D. E. Kinnison, et al., 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res. Atmos., 112, D09301. doi: 10.1029/2006JD007485
[11] Garcia, R. R., M. López-Puertas, B. Funke, et al., 2014: On the distribution of CO2 and CO in the mesosphere and lower thermosphere. J. Geophys. Res. Atmos., 119, 5700–5718. doi: 10.1002/2013JD021208
[12] Gettelman, A., M. I. Hegglin, S.-W. Son, et al., 2010: Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. J. Geophys. Res. Atmos., 115, D00M08. doi: 10.1029/2009JD013638
[13] Hegglin, M. I., S. Tegtmeier, J. Anderson, et al., 2013: SPARC Data Initiative: Comparison of water vapor climatologies from international satellite limb sounders. J. Geophys. Res. Atmos., 118, 11,824–11,846. doi: 10.1002/jgrd.50752
[14] Hoffmann, L., G. Günther, D. Li, et al., 2019: From ERA-Interim to ERA5: the considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 3097–3124. doi: 10.5194/acp-19-3097-2019
[15] Huang, Y., and M. B. Shahabadi, 2014: Why logarithmic? A note on the dependence of radiative forcing on gas concentration. J. Geophys. Res. Atmos., 119, 13,683–13,689. doi: 10.1002/2014JD022466
[16] Huang, Y., M. H. Zhang, Y. Xia, et al., 2016: Is there a stratospheric radiative feedback in global warming simulations? Climate Dyn., 46, 177–186. doi: 10.1007/s00382-015-2577-2
[17] Huang, Y., Y. Xia, and X. X. Tan, 2017: On the pattern of CO2 radiative forcing and poleward energy transport. J. Geophys. Res. Atmos., 122, 10,578–10,593. doi: 10.1002/2017JD027221
[18] James, R., M. Bonazzola, B. Legras, et al., 2008: Water vapor transport and dehydration above convective outflow during Asian monsoon. Geophys. Res. Lett., 35, L20810. doi: 10.1029/2008GL035441
[19] Jiang, J. H., H. Su, S. Pawson, et al., 2010: Five year (2004–2009) observations of upper tropospheric water vapor and cloud ice from MLS and comparisons with GEOS-5 analyses. J. Geophys. Res. Atmos., 115, D15103. doi: 10.1029/2009JD013256
[20] Jiang, J. H., H. Su, C. X. Zhai, et al., 2012: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J. Geophys. Res. Atmos., 117, D14105. doi: 10.1029/2011JD017237
[21] Jiang, J. H., H. Su, C. X. Zhai, et al., 2015: An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations. J. Geophys. Res. Atmos., 120, 11,468–11,485. doi: 10.1002/2015JD023752
[22] Kunz, A., L. L. Pan, P. Konopka, et al., 2011: Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses. J. Geophys. Res. Atmos., 116, D24302. doi: 10.1029/2011JD016686
[23] Li, J.-L., D. E. Waliser, J. H. Jiang, et al., 2005: Comparisons of EOS MLS cloud ice measurements with ECMWF analyses and GCM simulations: Initial results. Geophys. Res. Lett., 32, L18710. doi: 10.1029/2005GL023788
[24] Li, J.-L. F., D. Waliser, C. Woods, et al., 2008: Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulations. Geophys. Res. Lett., 35, L19710. doi: 10.1029/2008GL035427
[25] Livesey, N. J., W. G. Read, L. Froidevaux, et al., 2011: EOS MLS Version V3.3 Level 2 Data Quality and Description Document. Technical Report JPL D-33509, Jet Propulsion Laboratory, Pasadena, CA, 162 pp.
[26] Madonna, E., H. Wernli, H. Joos, et al., 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 3–26. doi: 10.1175/JCLI-D-12-00720.1
[27] Marsh, D. R., 2011: Chemical–dynamical coupling in the mesosphere and lower thermosphere. Aeronomy of the Earth’s Atmosphere and Ionosphere, M. A. Abdu, and D. Pancheva, Eds., Springer, Dordrecht, 3–17, doi: 10.1007/978-94-007-0326-1_1.
[28] Maycock, A. C., M. M. Joshi, K. P. Shine, et al., 2013: The circulation response to idealized changes in stratospheric water vapor. J. Climate, 26, 545–561. doi: 10.1175/JCLI-D-12-00155.1
[29] Mote, P. W., K. H. Rosenlof, M. E. McIntyre, et al., 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res. Atmos., 101, 3989–4006. doi: 10.1029/95JD03422
[30] Oltmans, S. J., H. Vömel, D. J. Hofmann, et al., 2000: The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado. Geophys. Res. Lett., 27, 3453–3456. doi: 10.1029/2000GL012133
[31] Pierce, D. W., T. P. Barnett, E. J. Fetzer, et al., 2006: Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite system. Geophys. Res. Lett., 33, L21701. doi: 10.1029/2006GL027060
[32] Randel, W. J., and E. J. Jensen, 2013: Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci., 6, 169–176. doi: 10.1038/ngeo1733
[33] Read, W. G., A. Lambert, J. Bacmeister, et al., 2007: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H2O and relative humidity with respect to ice validation. J. Geophys. Res. Atmos., 112, D24S35. doi: 10.1029/2007JD008752
[34] Reutter, P., P. Neis, S. Rohs, et al., 2020: Ice supersaturated regions: properties and validation of ERA-Interim reanalysis with IAGOS in situ water vapour measurements. Atmos. Chem. Phys., 20, 787–804. doi: 10.5194/acp-20-787-2020
[35] Rienecker, M. M., M. J. Suarez, R. Todling, et al., 2008: The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0. NASA/TM–2008–104606, Vol. 27, Goddard Space Flight Center, Greenbelt, Maryland, 118 pp.
[36] Riese, M., F. Ploeger, A. Rap, et al., 2012: Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects. J. Geophys. Res. Atmos., 117, D16305. doi: 10.1029/2012JD017751
[37] Sakazaki, T., M. Fujiwara, C. Mitsuda, et al., 2013: Diurnal ozone variations in the stratosphere revealed in observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station (ISS). J. Geophys. Res. Atmos., 118, 2991–3006. doi: 10.1002/jgrd.50220
[38] Shahabadi, M. B., and Y. Huang, 2014: Logarithmic radiative effect of water vapor and spectral kernels. J. Geophys. Res. Atmos., 119, 6000–6008. doi: 10.1002/2014JD021623
[39] Shindell, D. T., 2001: Climate and ozone response to increased stratospheric water vapor. Geophys. Res. Lett., 28, 1551–1554. doi: 10.1029/1999GL011197
[40] Smith, K. L., R. R. Neely, D. R. Marsh, et al., 2014: The Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). J. Adv. Model. Earth Syst., 6, 883–901. doi: 10.1002/2014MS000346
[41] Solomon, S., K. H. Rosenlof, R. W. Portmann, et al., 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219–1223. doi: 10.1126/science.1182488
[42] Straub, C., B. Tschanz, K. Hocke, et al., 2012: Transport of mesospheric H2O during and after the stratospheric sudden warming of January 2010: observation and simulation. Atmos. Chem. Phys., 12, 5413–5427. doi: 10.5194/acp-12-5413-2012
[43] Su, H., D. E. Waliser, J. H. Jiang, et al., 2006: Relationships of upper tropospheric water vapor, clouds and SST: MLS observations, ECMWF analyses and GCM simulations. Geophys. Res. Lett., 33, L22802. doi: 10.1029/2006GL027582
[44] Tandon, N. F., L. M. Polvani, and S. M. Davis, 2011: The response of the tropospheric circulation to water vapor–like forcings in the stratosphere. J. Climate, 24, 5713–5720. doi: 10.1175/JCLI-D-11-00069.1
[45] Tian, W. S., M. P. Chipperfield, and D. R. Lü, 2009: Impact of increasing stratospheric water vapor on ozone depletion and temperature change. Adv. Atmos. Sci., 26, 423–437. doi: 10.1007/s00376-009-0423-3
[46] Tweedy, O. V., V. Limpasuvan, Y. J. Orsolini, et al., 2013: Nighttime secondary ozone layer during major stratospheric sudden warmings in specified-dynamics WACCM. J. Geophys. Res. Atmos., 118, 8346–8358. doi: 10.1002/jgrd.50651
[47] Uma, K. N., S. K. Das, and S. S. Das, 2014: A climatological perspective of water vapor at the UTLS region over different global monsoon regions: observations inferred from the Aura-MLS and reanalysis data. Climate Dyn., 43, 407–420. doi: 10.1007/s00382-014-2085-9
[48] Wang, X. Y., Y. T. Wu, W.-W. Tung, et al., 2018: The simulation of stratospheric water vapor over the Asian summer monsoon in CESM1(WACCM) models. J. Geophys. Res. Atmos., 123, 11,377–11,391. doi: 10.1029/2018JD028971
[49] Wang, Y., H. Su, J. H. Jiang, et al., 2017: The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model. Climate Dyn., 48, 2671–2683. doi: 10.1007/s00382-016-3231-3
[50] Waters, J. W., L. Froidevaux, R. S. Harwood, et al., 2006: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44, 1075–1092. doi: 10.1109/TGRS.2006.873771
[51] Wegner, T., D. E. Kinnison, R. R. Garcia, et al., 2013: Simulation of polar stratospheric clouds in the specified dynamics version of the whole atmosphere community climate model. J. Geophys. Res. Atmos., 118, 4991–5002. doi: 10.1002/jgrd.50415
[52] Xia, Y., Y. Huang, Y. Y. Hu, et al., 2019: Impacts of tropical tropopause warming on the stratospheric water vapor. Climate Dyn., 53, 3409–3418. doi: 10.1007/s00382-019-04714-3
[53] Xia, Y., Y. Y. Hu, and J. P. Liu, 2020a: Comparison of trends in the Hadley circulation between CMIP6 and CMIP5. Sci. Bull., 65, 1667–1674. doi: 10.1016/j.scib.2020.06.011
[54] Xia, Y., Y. Huang, and Y. Y. Hu, 2020b: Robust acceleration of stratospheric moistening and its radiative feedback under greenhouse warming. J. Geophys. Res. Atmos., 125, e2020JD033090. doi: 10.1029/2020JD033090
[55] Yan, X. L., J. S. Wright, X. D. Zheng, et al., 2016: Validation of Aura MLS retrievals of temperature, water vapour and ozone in the upper troposphere and lower–middle stratosphere over the Tibetan Plateau during boreal summer. Atmos. Meas. Tech., 9, 3547–3566. doi: 10.5194/amt-9-3547-2016
[56] Yuan, T., B. Thurairajah, C.-Y. She, et al., 2012: Wind and temperature response of midlatitude mesopause region to the 2009 Sudden Stratospheric Warming. J. Geophys. Res. Atmos., 117, D09114. doi: 10.1029/2011JD017142
[57] Zhan, R. F., and Y. Q. Wang, 2012: Contribution of tropical cyclones to stratosphere-troposphere exchange over the northwest Pacific: Estimation based on AIRS satellite retrievals and ERA-Interim data. J. Geophys. Res. Atmos., 117, D12112. doi: 10.1029/2012JD017494