[1] Anjum, M. N., Y. J. Ding, D. H. Shangguan, et al., 2018: Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmos. Res., 205, 134–146. doi: 10.1016/j.atmosres.2018.02.010
[2] Beck, H. E., A. I. J. M. van Dijk, V. Levizzani, et al., 2017: MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21, 589–615. doi: 10.5194/hess-21-589-2017
[3] Chahine, M. T., 1992: The hydrological cycle and its influence on climate. Nature, 359, 373–380. doi: 10.1038/359373a0
[4] Chen, M. Y., W. Shi, P. P. Xie, et al., 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos., 113, D04110. doi: 10.1029/2007JD009132
[5] Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013–1023. doi: 10.1175/BAMS-84-8-1013
[6] Han, S., C. X. Shi, L. P. Jiang, et al., 2017: The simulation and evaluation of soil moisture based on CLDAS. J. Appl. Meteor. Sci., 28, 369–378. (in Chinese) doi: 10.11898/1001-7313.20170310
[7] Han, S., C. X. Shi, B. Xu, et al., 2019: Development and evaluation of hourly and kilometer resolution retrospective and real-time surface meteorological blended forcing dataset (SMBFD) in China. J. Meteor. Res., 33, 1168–1181. doi: 10.1007/s13351-019-9042-9
[8] Hou, A. Y., R. K. Kakar, S. Neeck, et al., 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701–722. doi: 10.1175/BAMS-D-13-00164.1
[9] Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55. doi: 10.1175/JHM560.1
[10] Jordan, R., 1991: A One-Dimensional Temperature Model for a Snow Cover. Technical Documentation for SNTHERM.89, CRREL-SR-91-16, Cold Regions Research and Engineering Laboratory, Hanover, NH, 64 pp.
[11] Joyce, R. J., J. E. Janowiak, P. A. Arkin, et al., 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503. doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
[12] Li, C. X., T. B. Zhao, C. X. Shi, et al., 2020: Evaluation of daily precipitation product in China from the CMA Global Atmospheric Interim Reanalysis. J. Meteor. Res., 34, 117–136. doi: 10.1007/s13351-020-8196-9
[13] Li, L., X. B. Fan, W. Cui, et al., 2015: Comparative analysis of precipitation between weighing gauge and manual gauge. J. Appl. Meteor. Sci., 26, 688–694. (in Chinese) doi: 10.11898/1001-7313.20150605
[14] Li, X. F., Z. J. Zhou, Z. P. Li, et al., 2017: Quality assessment of China merged precipitation product using hydrological data in Jiangxi Province. Meteor. Mon., 43, 1534–1546. (in Chinese) doi: 10.7519/j.issn.1000-0526.2017.12.009
[15] Liu, J. G., C. X. Shi, S. Sun, et al., 2019: Improving land surface hydrological simulations in China using CLDAS meteorological forcing data. J. Meteor. Res., 33, 1194–1206. doi: 10.1007/s13351-019-9067-0
[16] Miao, Y., and A. H. Wang, 2020: Evaluation of routed-runoff from land surface models and reanalyses using observed streamflow in Chinese river basins. J. Meteor. Res., 34, 73–87. doi: 10.1007/s13351-020-9120-z
[17] Niu, G.-Y., Z.-L. Yang, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos., 116, D12109. doi: 10.1029/2010JD015139
[18] Oleson, K. W., Y. J. Dai, G. Bonan, et al., 2004: Technical Description of the Community Land Model (CLM). No. NCAR/TN-461+STR, UCAR, Boulder, CO, 173 pp, doi: 10.5065/D6N877R0.
[19] Pan, Y., Y. Shen, J. J. Yu, et al., 2012: Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique. Acta Meteor. Sinica, 70, 1381–1389. (in Chinese) doi: 10.11676/qxxb2012.116
[20] Pan, Y., Y. Shen, J. J. Yu, et al., 2015: An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method. Acta Meteor. Sinica, 73, 177–186. (in Chinese) doi: 10.11676/qxxb2015.010
[21] Reichle, R. H., Q. Liu, R. D. Koster, et al., 2017: Land surface precipitation in MERRA-2. J. Climate, 30, 1643–1664. doi: 10.1175/JCLI-D-16-0570.1
[22] Ren, G. Y., Y. J. Zhan, Y. Y. Ren, et al., 2015: Spatial and temporal patterns of precipitation variability over mainland China: I: Climatology. Adv. Water Sci., 26, 299–310. (in Chinese) doi: 10.14042/j.cnki.32.1309.2015.03.001
[23] Ren, Z. H., M. N. Feng, H. Z. Zhang, et al., 2007: The difference and relativity between rainfall by automatic recording and manual observation. J. Appl. Meteor. Sci., 18, 358–364. (in Chinese) doi: 10.3969/j.issn.1001-7313.2007.03.012
[24] Rodell, M., P. R. Houser, U. Jambor, et al., 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381–394. doi: 10.1175/BAMS-85-3-381
[25] Shi, C. X., Z. H. Xie, H. Qian, et al., 2011: China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci., 54, 1430–1440. doi: 10.1007/s11430-010-4160-3
[26] Shi, C. X., L. P. Jiang, T. Zhang, et al., 2014: Status and plans of CMA Land Data Assimilation System (CLDAS) Project. Geophysical Research Abstracts, 16, EGU2014-5671.
[27] Sun, S., C. X. Shi, X. Liang, et al., 2017: Assessment of ground temperature simulation in China by different land surface models based on station observations. J. Appl. Meteor. Sci., 28, 737–749. (in Chinese) doi: 10.11898/1001-7313.20170609
[28] Trenberth, K. E., and J. G. Olson, 1988: An evaluation and intercomparison of global analyses from the National Meteorological Center and the European Centre for Medium Range Weather Forecasts. Bull. Amer. Meteor. Soc., 69, 1047–1057. doi: 10.1175/1520-0477(1988)069<1047:AEAIOG>2.0.CO;2
[29] Ushio, T., K. Sasashige, T. Kubota, et al., 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137–151. doi: 10.2151/jmsj.87A.137
[30] Wang, Z. L., R. D. Zhong, C. G. Lai, et al., 2017: Evaluation of TRMM 3B42-V7 satellite-based precipitation data product in the Pearl River basin, China: Dongjiang River and Beijiang River basin as examples. Adv. Water Sci., 28, 174–182. (in Chinese) doi: 10.14042/j.cnki.32.1309.2017.02.002
[31] Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
[32] Xie, Y., S. Koch, J. McGinley, et al., 2011: A space–time multiscale analysis system: A sequential variational analysis approach. Mon. Wea. Rev., 139, 1224–1240. doi: 10.1175/2010MWR3338.1
[33] Xu, B., P. P. Xie, M. Xu, et al., 2015: A validation of passive microwave rain-rate retrievals from the Chinese FengYun-3B satellite. J. Hydrometeor., 16, 1886–1905. doi: 10.1175/JHM-D-14-0143.1
[34] Yang, Z.-L., G.-Y. Niu, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos., 116, D12110. doi: 10.1029/2010JD015140
[35] Zhang, T., C. S. Miao, and X. Wang, 2014: Comparison tests of the integration effect of surface temperature by LAPS and STMAS. Plateau Meteor., 33, 743–752. (in Chinese)
[36] Zhao, F., A. Y. Xiong, X. Y. Zhang, et al., 2017: Technical characteristics of the architecture design of China Integrated Meteorological Information Sharing System. J. Appl. Meteor. Sci., 28, 750–758. (in Chinese) doi: 10.11898/1001-7313.20170610