[1] Bao, G., X.-P. Xin, Y.-H. Bao, et al., 2016: Optimization of maximum light use efficiency in Inner Mongolian steppe. Spectrosc. Spect. Anal., 36, 3280–3286. (in Chinese)
[2] Bartholomé, E., and A. S. Belward, 2005: GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens., 26, 1959–1977. doi: 10.1080/01431160412331291297
[3] Bicheron, P., P. Defourny, C. Brockmann, et al., 2011: GlobCover: Products description and validation report. Foro Mundial De La Salud, 17, 285–287. Available online at https://www.researchgate.net/publication/260137807_GLOBCOVER_products_description_and_validation_report. Accessed on 20 May 2022.
[4] Chen, A. P., S. L. Piao, S. Luyssaert, et al., 2011: Forest annual carbon cost: Reply. Ecology, 92, 1998–2002. doi: 10.1890/11-0785.1
[5] Chen, F., H.-B. Li, and Y.-J. Liu, 2018: Spatio–temporal differentiation and influencing factors of vegetation net primary productivity using GIS and CASA: A case study in Yuanyang County, Yunnan. Chinese J. Ecol., 37, 2148–2158. (in Chinese) doi: 10.13292/j.1000-4890.201807.003
[6] Chen, R. R., Z. M. Hu, S. G. Li, et al., 2020: Assessment of normalized difference vegetation index from different data sources in grassland of northern China. J. Geo-Inf. Sci., 22, 1910–1919. (in Chinese) doi: 10.12082/dqxxkx.2020.190237
[7] Chen, T., L. Y. Zhao, B. F. Hou, et al., 2018: Remote sensing estimation net primary productivity (NPP) of ecosystem in Wuhan City using the CASA model. J. Hubei Univ. (Nat. Sci.), 40, 315–322, doi: 10.3969/j.issn.1000-2375.2018.03.020. (in Chinese)
[8] Chen, Z., G. R. Yu, X. J. Zhu, et al., 2019: A dataset of primary production, respiration and net production in Chinese typical terrestrial ecosystems based on literature integration. China Sci. Data, 4, 50–58. (in Chinese) doi: 10.11922/csdata.2018.0024.zh
[9] Chen, Z.-H., Q.-Y. Ma, J. Wang, et al., 2008: Estimation of Heihe basin net primary productivity using the CASA model. J. Nat. Resour., 23, 263–273. (in Chinese) doi: 10.3321/j.issn:1000-3037.2008.02.011
[10] Dong, D., and J. Ni, 2011: Modeling changes of net primary productivity of karst vegetation in southwestern China using the CASA model. Acta Ecol. Sinica, 31, 1855–1866. (in Chinese)
[11] Du, J. Q., J. M. Shu, C. X. Zhao, et al., 2016: Comparison of GIMMS NDVI3g and GIMMS NDVIg for monitoring vegetation activity and its responses to climate changes in Xinjiang during 1982–2006. Acta Ecol. Sinica, 36, 6738–6749. (in Chinese) doi: 10.5846/stxb201504190805
[12] Field, C. B., M. J. Behrenfeld, J. T. Randerson, et al., 1998: Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–240. doi: 10.1126/science.281.5374.237
[13] Friedl, M. A., D. K. Mciver, J. C. F. Hodges, et al., 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287–302. doi: 10.1016/S0034-4257(02)00078-0
[14] Ge, M. X., J. Zhao, B. Zhong, et al., 2017. Comparison of the vegetation indexes between FY-3/VIRR, FY-3/MERSI and EOS/MODIS data. Remote Sens. Technol. Appl., 32, 262–273. (in Chinese)
[15] Gong, P., 2009: Accuracy verification of global land cover map based on global flux observatory. Prog. Nat. Sci., 19, 754–759. (in Chinese) doi: 10.3321/j.issn:1002-008X.2009.07.008
[16] Gu, J., X. Li, C.-L. Huang, et al., 2013: Simulating net primary productivity of Chinese terrestrial vegetation during 2002–2010. J. Lanzhou Univ. (Nat. Sci.), 49, 203–213. (in Chinese) doi: 10.3969/j.issn.0455-2059.2013.02.008
[17] Han, X. Z., F. Wang, and Y. Han, 2019: Fengyun-3D MERSI true color imagery developed for environmental applications. J. Meteor. Res., 33, 914–924. doi: 10.1007/s13351-019-9028-7
[18] Han, X. Z., J. Yang, S. H. Tang, et al., 2020: Vegetation products derived from Fengyun-3D medium resolution spectral imager-II. J. Meteor. Res., 34, 775–785. doi: 10.1007/s13351-020-0027-5
[19] Hansen, M. C., R. S. Defries, J. R. G. Townshend, et al., 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 1331–1364. doi: 10.1080/014311600210209
[20] Hicke, J. A., G. P. Asner, J. T. Randerson, et al., 2002: Trends in North American net primary productivity derived from satellite observations, 1982–1998. Global Biogeochem. Cy., 16, 1018. doi: 10.1029/2001GB001550
[21] Hong, C. Q., X. B. Jin, C. C. Chen, et al., 2017: Overview on estimation models of land net primary productivity integrating remote sensing data. Prog. Geogr., 36, 924–939. (in Chinese) doi: 10.18306/dlkxjz.2017.08.002
[22] Huete, A., C. Justice, and W. van Leeuwen, 1999: MODIS vegetation index (MOD 13) algorithm theoretical basis document. Available online at https://lpdaac.usgs.gov/documents/104/MOD13_ATBD.pdf. Accessed on 18 May 2022.
[23] Knyazikhin, Y., J. Glassy, J. L. Privette, et al., 1999: MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15) algorithm theoretical basis document. Available online at https://lpdaac.usgs.gov/documents/90/MOD15_ATBD.pdf. Accessed on 18 May 2022.
[24] Li, C. C., J. Wang, L. Y. Hu, et al., 2014: A circa 2010 thirty meter resolution forest map for China. Remote Sens., 6, 5325–5343. doi: 10.3390/rs6065325
[25] Li, C. H., H. J. Cao, Y. P. Fan, et al., 2019: Remote sensing estimation and analysis of net primary productivity (NPP) based on corrected CASA model: A case study of Hexi corridor. Acta Ecol. Sinica, 39, 1616–1626. (in Chinese) doi: 10.5846/stxb201802060319
[26] Liang, S. L., X. W. Li, J. D. Wang, et al., 2019: Quantitative Remote Sensing: Ideas and Algorithms. 2nd Ed., Science Press, Beijing, 941–942. (in Chinese)
[27] Liu, G., R. Sun, Z. Q. Xiao, et al., 2017: Analysis of spatial and temporal variation of net primary productivity and climate controls in China from 2001 to 2014. Acta Ecol. Sinica, 37, 4936–4945. (in Chinese)
[28] Liu, J. F., L. Chen, Q. Meng, et al., 2019: Research on maximum light use efficiency based on CASA-VPM model. J. Henan Agric. Sci., 48, 157–163. (in Chinese) doi: 10.15933/j.cnki.1004-3268.2019.12.024
[29] Liu, Y. H., C. H. Ye, K. W. Wang, et al., 2008: Soil moisture prediction technique in Beijing supported by RS and GIS techniques. Trans. CSAE, 24, 155–160. (in Chinese) doi: 10.3321/j.issn:1002-6819.2008.09.031
[30] Liu, Y. H., W. J. Quan, and Y. H. Gao, 2010: Net primary production and its spatio–temporal pattern in North China. J. Nat. Resour., 25, 564–573. (in Chinese) doi: 10.11849/zrzyxb.2010.04.005
[31] Loveland, T. R., B. C. Reed, J. F. Brown, et al., 2000: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21, 1303–1330. doi: 10.1080/014311600210191
[32] Potter, C. S., J. T. Randerson, C. B. Field, et al., 1993: Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochem. Cy., 7, 811–841. doi: 10.1029/93GB02725
[33] Prince, S. D., and S. N. Goward, 1995: Global primary production: A remote sensing approach. J. Biogeogr., 22, 815–835. doi: 10.2307/2845983
[34] Qu, J. H., J. J. Yan, and Y. T. Wang, 2019: Global clear-sky data synthesis technology based on FY-3D MERSI-II instrument. Meteor. Sci. Technol., 47, 539–545. (in Chinese) doi: 10.19517/j.1671-6345.20180442
[35] Ran, Y.-H., X. Li, and L. Lu, 2009: Accuracy evaluation of the four remote sensing based land cover products over China. J. Glaciol. Geocryol., 31, 490–500. (in Chinese) doi: 10.3724/SP.J.1300.2012.20075
[36] Running, S. W., R. Nemani, J. M. Glassy, et al., 1999: MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product (MOD17) algorithm theoretical basis document. Available online at https://lpdaac.usgs.gov/documents/95/MOD17_ATBD.pdf. Accessed on 18 May 2022.
[37] Running, S. W., R. R. Nemani, F. A. Heinsch, et al., 2004: A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54, 547–560. doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
[38] Shan, T. C., W. Zheng, J. Chen, et al., 2021: A burned area mapping method for the FY-3D MERSI based on the single-temporal L1 data and multi-temporal daily active fire products. Int. J. Remote Sens., 42, 1292–1310. doi: 10.1080/01431161.2020.1826064
[39] Strahler, A., D. Muchoney, J. Botrak, et al., 1999: MODIS land cover product algorithm theoretical basis document version 5.0 MODIS land cover and land-cover change. Available online at https://lpdaac.usgs.gov/documents/86/MCD12_ATBD.pdf. Accessed on 18 May 2022.
[40] Urban, O., D. Janouš, M. Acosta, et al., 2007: Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Glob. Change Biol., 13, 157–168. doi: 10.1111/j.1365-2486.2006.01265.x
[41] Wang, B.-L., J.-J. Wang, Y. Yang, et al., 2013: Algorithm improvements for two important parameters of FPAR and maximum solar energy utilization efficiency. Acta Pratacul. Sinica, 22, 220–228. (in Chinese) doi: 10.11686/cyxb20130526
[42] Wang, J., Y. Y. Zhao, C. C. Li, et al., 2015: Mapping global land cover in 2001 and 2010 with spatial–temporal consistency at 250 m resolution. ISPRS J. Photogramm. Remote Sens., 103, 38–47. doi: 10.1016/j.isprsjprs.2014.03.007
[43] Wang, J. B., J. Y. Liu, Q. Q. Shao, et al., 2009: Spatial–temporal patterns of net primary productivity for 1988–2004 based on GLOPEM-CEVSA model in the “Three-River Headwaters” region of Qinghai Province, China. J. Plant Ecol., 33, 254–269. (in Chinese) doi: 10.3773/j.issn.1005-264x.2009.02.003
[44] Wang, J. L., H. Q. Lyu, G. P. Zhang, et al., 2005: Agrometeorological Forecast. Meteorological Press, Beijing, 89–109. (in Chinese)
[45] Wang, W. W., C. M. Zhang, F. Li, et al., 2020: Extracting soil moisture from Fengyun-3D medium resolution spectral imager-II imagery by using a deep belief network. J. Meteor. Res., 34, 748–759. doi: 10.1007/s13351-020-9191-x
[46] Xiao, X. M., Q. Y. Zhang, D. Hollinger, et al., 2005: Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecol. Appl., 15, 954–969. doi: 10.1890/04-0470
[47] Xu, J., H.-L. Chen, S.-S. Shang, et al., 2020: Response of net primary productivity of Tibetan Plateau vegetation to climate change based on CEVSA model. Arid Land Geogr., 43, 592–601. (in Chinese)
[48] Xu, Y. Q., F. J. Xiao, and L. Yu, 2020: Review of spatio–temporal distribution of net primary productity in forest ecosystem and its responses to climate change in China. Acta Ecol. Sinica, 40, 4710–4723. (in Chinese)
[49] Yan, H., S.-Q. Wang, D. Billesbach, et al., 2015: Improved global simulations of gross primary product based on a new definition of water stress factor and a separate treatment of C3 and C4 plants. Ecol. Model., 297, 42–59. doi: 10.1016/j.ecolmodel.2014.11.002
[50] Yang, C., J. J. Yu, X. F. Song, et al., 2004: Reference crop evapotranspiration calculation in short interval of mountainous area in North China. Prog. Geogr., 23, 71–80. (in Chinese) doi: 10.11820/dlkxjz.2004.06.009
[51] Yang, Y. K., P. F. Xiao, X. Z. Feng, et al., 2014: Comparison and assessment of large-scale land cover datasets in China and adjacent regions. J. Remote Sens., 18, 453–475. (in Chinese) doi: 10.11834/jrs.20143055
[52] Yin, K., Y. C. Tian, C. Yuan, et al., 2015: NPP spatial and temporal pattern of vegetation in Beijing and its factor explanation based on CASA model. Remote Sens. Land Resour., 27, 133–139. (in Chinese) doi: 10.6046/gtzyyg.2015.01.21
[53] Yuan, J. G., Z. Niu, and C. L. Wang, 2006: Vegetation NPP distribution based on MODIS data and CASA model—A case study of northern Hebei Province. Chinese Geogr. Sci., 16, 334–341. doi: 10.1007/s11769-006-0334-5
[54] Zhang, F., G.-S. Zhou, and Y.-H. Wang, 2008: Dynamics simulation of net primary productivity by a satellite data-driven casa model in Inner Mongolian typical steppe, China. J. Plant Ecol., 32, 786–797. (in Chinese) doi: 10.3773/j.issn.1005-264x.2008.04.007
[55] Zhang, M. L., W. L. Jiang, Q. G. Chen, et al., 2014: Estimation of grassland net primary production in China with improved CASA model based on the CSCS. J. Desert Res., 34, 1150–1160. (in Chinese)
[56] Zhao, Z. P., X. P. Wu, G. Li, et al., 2015: Drought in southwestern China and its impact on the net primary productivity of vegetation from 2009–2011. Acta Ecol. Sinica, 35, 350–360. (in Chinese) doi: 10.5846/stxb201304040604
[57] Zhou, G.-S., and X.-S. Zhang, 1995: A natural vegetation NPP model. Acta Phytoecol. Sinica, 19, 193–200. (in Chinese)
[58] Zhu, W.-Q., Y.-Z. Pan, and J.-S. Zhang, 2007: Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. J. Plant Ecol., 31, 413–424. (in Chinese) doi: 10.17521/cjpe.2007.0050