[1] Abdi, O. A., E. K. Glover, and O. Luukkanen, 2013: Causes and impacts of land degradation and desertification: Case study of the Sudan. Int. J. Agric. For., 3, 40–51.
[2] Ahmadalipour, A., H. Moradkhani, A. Castelletti, et al., 2019: Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Sci. Tot. Environ., 662, 672–686. doi: 10.1016/j.scitotenv.2019.01.278
[3] Balint, Z., F. Mutua, P. Muchiri, et al., 2013: Monitoring drought with the combined drought index in Kenya. Dev. Earth Surf. Processes, 16, 341–356. doi: 10.1016/B978-0-444-59559-1.00023-2
[4] Baniya, B., Q. H. Tang, X. M. Xu, et al., 2019: Spatial and temporal variation of drought based on satellite derived vegetation condition index in Nepal from 1982–2015. Sensors, 19, 430. doi: 10.3390/s19020430
[5] Beguería, S., S. M. Vicente-Serrano, F. Reig, et al., 2014: Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol., 34, 3001–3023. doi: 10.1002/joc.3887
[6] Bezdan, J., A. Bezdan, B. Blagojević, et al., 2019: SPEI-based approach to agricultural drought monitoring in Vojvodina region. Water, 11, 1481. doi: 10.3390/w11071481
[7] Buotte, P. C., S. Levis, B. E. Law, et al., 2019: Near-future forest vulnerability to drought and fire varies across the western United States. Glob. Change Biol., 25, 290–303. doi: 10.1111/gcb.14490
[8] Chen, C.-P., K.-W. Juang, C.-H. Cheng, et al., 2016: Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan. Bot. Stud., 57, 32. doi: 10.1186/s40529-016-0147-5
[9] Chen, T. T., G. M. Xia, T. G. Liu, et al., 2016: Assessment of drought impact on main cereal crops using a standardized precipitation evapotranspiration index in Liaoning Province, China. Sustainability, 8, 1069. doi: 10.3390/su8101069
[10] Cheval, S., A. Busuioc, A. Dumitrescu, et al., 2014: Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index (SPI). Climate Res., 60, 235–248. doi: 10.3354/cr01245
[11] Dike, V. N., Z. H. Lin, Y. X. Wang, et al., 2019: Observed trends in diurnal temperature range over Nigeria. Atmos. Oceanic Sci. Lett., 12, 131–139. doi: 10.1080/16742834.2019.1570688
[12] Droogers, P., and R. G. Allen, 2002: Estimating reference evapotranspiration under inaccurate data conditions. Irrigat. Drainage Syst., 16, 33–45. doi: 10.1023/A:1015508322413
[13] Drumond, A., R. Nieto, and L. Gimeno, 2016: A Lagrangian approach for investigating anomalies in the moisture transport during drought episodes. Cuadernos de Investigación Geográfica, 42, 113–125. doi: 10.18172/cig.2925
[14] Dutta, D., A. Kundu, N. R. Patel, et al., 2015: Assessment of agricultural drought in Rajasthan (India) using remote sensing derived vegetation condition index (VCI) and standardized precipitation index (SPI). Egypt. J. Remote Sens. Space Sci., 18, 53–63. doi: 10.1016/j.ejrs.2015.03.006
[15] Elhag, K. M., and W. C. Zhang, 2018: Monitoring and assessment of drought focused on its impact on sorghum yield over Sudan by using meteorological drought indices for the period 2001–2011. Remote Sens., 10, 1231. doi: 10.3390/rs10081231
[16] Funk, C. C., P. J. Peterson, M. F. Landsfeld, et al., 2014: A quasi-global precipitation time series for drought monitoring. U.S. Geological Survey Data Series 832, 4 pp, doi: 10.3133/ds832.
[17] Funk, C., P. Peterson, M. Landsfeld, et al., 2015: The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data, 2, 150066. doi: 10.1038/sdata.2015.66
[18] Ghebrezgabher, M. G., T. B. Yang, and X. M. Yang, 2016: Long-term trend of climate change and drought assessment in the Horn of Africa. Adv. Meteor., 2016, 8057641. doi: 10.1155/2016/8057641
[19] Giannini, A., M. Biasutti, and M. M. Verstraete, 2008: A climate model-based review of drought in the Sahel: Desertification, the re-greening and climate change. Glob. Planet. Change, 64, 119–128. doi: 10.1016/j.gloplacha.2008.05.004
[20] Haarsma, R. J., F. M. Selten, S. L. Weber, et al., 2005: Sahel rainfall variability and response to greenhouse warming. Geophys. Res. Lett., 32, L17702, doi: 10.1029/2005GL023232.
[21] Haile, G. G., Q. H. Tang, G. Y. Leng, et al., 2020: Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa. Sci. Tot. Environ., 704, 135299. doi: 10.1016/j.scitotenv.2019.135299
[22] Huang, S. Z., Q. Huang, G. Y. Leng, et al., 2016: A nonparametric multivariate standardized drought index for characterizing socioeconomic drought: A case study in the Heihe River Basin. J. Hydrol., 542, 875–883. doi: 10.1016/j.jhydrol.2016.09.059
[23] IPCC, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry, M., O. Canziani, J. Palutikof, et al., Eds., Cambridge University Press, Cambridge, UK, 976 pp.
[24] IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Barros, V. R., C. B. Field, D. J. Dokken, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 688 pp.
[25] Jamshidi, H., D. Khalili, M. R. Zadeh, et al., 2011: Assessment and comparison of SPI and RDI meteorological drought indices in selected synoptic stations of Iran. World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, Beighley II, R. E., and M. W. Killgore, Eds., Palm Springs, California, ASCE, 1161–1173, doi: 10.1061/41173(414)120.
[26] Jiao, W. Z., C. Tian, Q. Chang, et al., 2019: A new multi-sensor integrated index for drought monitoring. Agric. For. Meteor., 268, 74–85. doi: 10.1016/j.agrformet.2019.01.008
[27] Kamali, B., K. C. Abbaspour, A. Lehmann, et al., 2018: Spatial assessment of maize physical drought vulnerability in sub-Saharan Africa: Linking drought exposure with crop failure. Environ. Res. Lett., 13, 074010. doi: 10.1088/1748-9326/aacb37
[28] Kinsey, B., K. Burger, and J. W. Gunning, 1998: Coping with drought in Zimbabwe: Survey evidence on responses of rural households to risk. World Dev., 26, 89–110. doi: 10.1016/S0305-750X(97)00124-1
[29] Kogan, F. N., 1995: Application of vegetation index and brightness temperature for drought detection. Adv. Space Res., 15, 91–100. doi: 10.1016/0273-1177(95)00079-T
[30] Kogan, F., A. Gitelson, E. Zakarin, et al., 2003: AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogramm. Eng. Remote Sens., 69, 899–906. doi: 10.14358/PERS.69.8.899
[31] Li, X., B. B. He, X. W. Quan, et al., 2015: Use of the standardized precipitation evapotranspiration index (SPEI) to characterize the drying trend in Southwest China from 1982–2012. Remote Sens., 7, 10917–10937. doi: 10.3390/rs70810917
[32] Liang, L., Q. Sun, X. Luo, et al., 2017: Long-term spatial and temporal variations of vegetative drought based on vegetation condition index in China. Ecosphere, 8, e01919. doi: 10.1002/ecs2.1919
[33] Liu, W. T., and F. N. Kogan, 1996: Monitoring regional drought using the vegetation condition index. Int. J. Remote Sens., 17, 2761–2782. doi: 10.1080/01431169608949106
[34] Livada, I., and V. D. Assimakopoulos, 2007: Spatial and temporal analysis of drought in Greece using the standardized precipitation index (SPI). Theor. Appl. Climatol., 89, 143–153. doi: 10.1007/s00704-005-0227-z
[35] Masih, I., S. Maskey, F. E. F. Mussá, et al., 2014: A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci., 18, 3635–3649. doi: 10.5194/hess-18-3635-2014
[36] Masud, M. B., M. N. Khaliq, and H. S. Wheater, 2015: Analysis of meteorological droughts for the Saskatchewan River Basin using univariate and bivariate approaches. J. Hydrol., 522, 452–466. doi: 10.1016/j.jhydrol.2014.12.058
[37] McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, Amer. Meteor. Soc., Anaheim, CA, 179–184.
[38] Measho, S., B. Z. Chen, Y. Trisurat, et al., 2019: Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in the semiarid region, Eritrea. Remote Sens., 11, 724. doi: 10.3390/rs11060724
[39] Meroni, M., F. Rembold, D. Fasbender, et al., 2017: Evaluation of the standardized precipitation index as an early predictor of seasonal vegetation production anomalies in the Sahel. Remote Sens. Lett., 8, 301–310. doi: 10.1080/2150704X.2016.1264020
[40] Misra, A. K., 2014: Climate change and challenges of water and food security. Int. J. Sustain. Built Environ., 3, 153–165. doi: 10.1016/j.ijsbe.2014.04.006
[41] Mohmmed, A., K. Zhang, M. Kabenge, et al., 2018a: Analysis of drought and vulnerability in the North Darfur region of Sudan. Land Degrad. Dev., 29, 4424–4438. doi: 10.1002/ldr.3180
[42] Mohmmed, A., J. H. Li, J. Elaru, et al., 2018b: Assessing drought vulnerability and adaptation among farmers in Gadaref region, Eastern Sudan. Land Use Policy, 70, 402–413. doi: 10.1016/j.landusepol.2017.11.027
[43] Moorhead, J. E., P. H. Gowda, V. P. Singh, et al., 2015: Identifying and evaluating a suitable index for agricultural drought monitoring in the Texas High Plains. J. Amer. Water Resour. Assoc., 51, 807–820. doi: 10.1111/jawr.12275
[44] Nasrollahi, M., H. Khosravi, A. Moghaddamnia, et al., 2018: Assessment of drought risk index using drought hazard and vulnerability indices. Arab. J. Geosci., 11, 606. doi: 10.1007/s12517-018-3971-y
[45] Naumann, G., P. Barbosa, L. Garrote, et al., 2014: Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrol. Earth Syst. Sci., 18, 1591–1604. doi: 10.5194/hess-18-1591-2014
[46] NourEldeen, N., K. B. Mao, Z. J. Yuan, et al., 2020: Analysis of the spatiotemporal change in land surface temperature for a long-term sequence in Africa (2003–2017). Remote Sens., 12, 488. doi: 10.3390/rs12030488
[47] Odekunle, T. O., O. Andrew, and S. O. Aremu, 2008: Towards a wetter Sudano-Sahelian ecological zone in twenty-first century Nigeria. Weather, 63, 66–70. doi: 10.1002/wea.172
[48] Palmer, W. C., 1965: Meteorological Drought. Research Paper No. 45, U.S. Department of Commerce, Weather Bureau, Washington, D.C., 58 pp.
[49] Panda, A., 2017: Vulnerability to climate variability and drought among small and marginal farmers: A case study in Odisha, India. Climate Dev., 9, 605–617. doi: 10.1080/17565529.2016.1184606
[50] Park, J.-Y., J. Bader, and D. Matei, 2016: Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat. Climate Change, 6, 941–945. doi: 10.1038/nclimate3065
[51] Patel, N. R., P. Chopra, and V. K. Dadhwal, 2007: Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorol. Appl., 14, 329–336. doi: 10.1002/met.33
[52] Potop, V., C. Boroneanţ, M. Možný, et al., 2014: Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theor. Appl. Climatol., 115, 563–581. doi: 10.1007/s00704-013-0908-y
[53] Qian, X. J., L. Liang, Q. Shen, et al., 2016: Drought trends based on the VCI and its correlation with climate factors in the agricultural areas of China from 1982 to 2010. Environ. Monit. Assess., 188, 639. doi: 10.1007/s10661-016-5657-9
[54] Quiring, S. M., and S. Ganesh, 2010: Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteor., 150, 330–339. doi: 10.1016/j.agrformet.2009.11.015
[55] Rao, M. P., N. K. Davi, R. D. D’Arrigo, et al., 2015: Dzuds, droughts, and livestock mortality in Mongolia. Environ. Res. Lett., 10, 074012. doi: 10.1088/1748-9326/10/7/074012
[56] Sadeghravesh, M. H., H. Khosravi, and S. Ghasemian, 2016: Assessment of combating-desertification strategies using the linear assignment method. Solid Earth, 7, 673–683. doi: 10.5194/se-7-673-2016
[57] Senay, G. B., N. M. Velpuri, S. Bohms, et al., 2015: Drought monitoring and assessment: Remote sensing and modeling approaches for the Famine Early Warning Systems Network. Hydro-Meteorological Hazards, Risks, and Disasters, Shroder, J. F., P. Paron, and G. Di Baldassarre, Eds., Elsevier, Amsterdam, Netherlands, 233–262, doi: 10.1016/B978-0-12-394846-5.00009-6.
[58] Shah, R., N. Bharadiya, and V. Manekar, 2015: Drought index computation using standardized precipitation index (SPI) method for Surat district, Gujarat. Aquat. Procedia, 4, 1243–1249. doi: 10.1016/j.aqpro.2015.02.162
[59] Siebert, A., 2016: Analysis of the future potential of index insurance in the West African Sahel using CMIP5 GCM results. Climatic Change, 134, 15–28. doi: 10.1007/s10584-015-1508-x
[60] Spinoni, J., G. Naumann, J. V. Vogt, et al., 2015: The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud., 3, 509–524. doi: 10.1016/j.ejrh.2015.01.001
[61] Thomas, T., R. K. Jaiswal, R. V. Galkate, et al., 2016: Reconnaissance drought index based evaluation of meteorological drought characteristics in Bundelkhand. Procedia Technol., 24, 23–30. doi: 10.1016/j.protcy.2016.05.005
[62] Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 55–94. doi: 10.2307/210739
[63] Twongyirwe, R., D. Mfitumukiza, B. Barasa, et al., 2019: Perceived effects of drought on household food security in South-western Uganda: Coping responses and determinants. Wea. Climate Extremes, 24, 100201. doi: 10.1016/j.wace.2019.100201
[64] Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 1696–1718. doi: 10.1175/2009JCLI2909.1
[65] Vicente-Serrano, S. M., S. Beguería, L. Gimeno, et al., 2012: Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Appl. Geogr., 34, 471–486. doi: 10.1016/j.apgeog.2012.02.001
[66] Vicente-Serrano, S. M., C. Gouveia, J. J. Camarero, et al., 2013: Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA, 110, 52–57. doi: 10.1073/pnas.1207068110
[67] Visser, S. M., and G. Sterk, 2007: Nutrient dynamics—wind and water erosion at the village scale in the Sahel. Land Degrad. Dev., 18, 578–588. doi: 10.1002/ldr.800
[68] Wang, K.-Y., Q.-F. Li, Y. Yang, et al., 2015: Analysis of spatio-temporal evolution of droughts in Luanhe River Basin using different drought indices. Water Sci. Eng., 8, 282–290. doi: 10.1016/j.wse.2015.11.004
[69] Yang, M. J., D. H. Yan, Y. D. Yu, et al., 2016: SPEI-based spatiotemporal analysis of drought in Haihe River Basin from 1961 to 2010. Adv. Meteor., 2016, 7658015. doi: 10.1155/2016/7658015
[70] Yuan, S., S. M. Quiring, and S. Patil, 2016: Spatial and temporal variations in the accuracy of meteorological drought indices. Cuadernos de Investigación Geográfica, 42, 167–183. doi: 10.18172/cig.2916
[71] Zhang, Q., T. Y. Qi, V. P. Singh, et al., 2015: Regional frequency analysis of droughts in China: A multivariate perspective. Water Resour. Manag., 29, 1767–1787. doi: 10.1007/s11269-014-0910-x