[1] Berk, A., G. P. Anderson, P. K. Acharya, et al., 1999: Modtran4 User’s Manual. Air Force Research Laboratory, Space Vehicles Directorate, AIR FORCE MATERIEL COMMAND, Hanscom AFB, MA 01731-3010, 99 pp.
[2] Chang, F., 2015: Comparison of T639 numerical forecast and actual sounding data. Mod. Agric. Sci. Technol., 2, 252–254, 257. (in Chinese)
[3] Coret, L., X. Briottet, Y. H. Kerr, et al., 2004: Simulation study of view angle effects on thermal infrared measurements over heterogeneous surfaces. IEEE Trans. Geosci. Remote Sens., 42, 664–672. doi: 10.1109/tgrs.2003.819443
[4] Czajkowski, K. P., S. N. Goward, D. Shirey, et al., 2002: Thermal remote sensing of near-surface water vapor. Remote Sens. Environ., 79, 253–265. doi: 10.1016/S0034-4257(01)00277-2
[5] Dalu, G., 1986: Satellite remote sensing of atmospheric water vapour. Int. J. Remote Sens., 7, 1089–1097. doi: 10.1080/01431168608948911
[6] Guillory, A. R., G. J. Jedlovec, and H. E. Fuelberg, 1993: A technique for deriving column-integrated water content using VAS split-window data. J. Appl. Meteor., 32, 1226–1241. doi: 10.1175/1520-0450(1993)032<1226:ATFDCI>2.0.CO;2
[7] Guo, Z., Y. H. Chen, M. M. Cheng, et al., 2014: Near-surface air temperature retrieval from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data. Int. J. Remote Sens., 35, 3892–3914. doi: 10.1080/01431161.2014.919674
[8] Haines, S. L., G. J. Jedlovec, and R. L. Suggs, 2004: The GOES Product Generation System. NASA/TM-2004-213286, NASA, Huntsville, Alabama, 64 pp.
[9] Hu, J. Y., S. H. Tang, H. L. Liu, et al., 2017: Production and validation of FY-3C VIRR total precipitable water products. J. Remote Sens., 21, 842–852. (in Chinese) doi: 10.11834/jrs.20176350
[10] Hu, X., N. M. Lu, T. Niu, and P. Zhang, 2008: Operational retrie-val of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time fore- cast in Asia. Atmos. Chem. Phys., 8, 1649–1659. doi: 10.5194/acp-8-1649-2008
[11] Hu, X. Q., N. Xu, F. Z. Weng, et al., 2013: Long-term monit- oring and correction of FY-2 infrared channel calibration us- ing AIRS and IASI. IEEE Trans. Geosci. Remote Sens., 51, 5008–5018. doi: 10.1109/TGRS.2013.2275871
[12] Jedlovec, G. J., 1987: Determination of atmospheric moisture structure from high resolution MAMS radiance data. Ph.D. dissertation, University of Wisconsin, Madison, 187 pp
[13] Jedlovec, G. J., 1990: Precipitable water estimation from high-resolution split window radiance measurement. J. Appl. Meteor., 29, 863–877. doi: 10.1175/1520-0450(1990)029<0863:PWEFHR>2.0.CO;2
[14] Julien, Y., J. A. Sobrino, C. Mattar, et al., 2015: Near-real-time estimation of water vapor column from MSG-SEVIRI thermal infrared bands: Implications for land surface temperature retrieval. IEEE Trans. Geosci. Remote Sens., 53, 4231–4237. doi: 10.1109/tgrs.2015.2393378
[15] Kleespies, T. J., and L. M. McMillin, 1990: Retrieval of precipitable water from observations in the split window over varying surface temperatures. J. Appl. Meteor., 29, 851–862. doi: 10.1175/1520-0450(1990)029<0851:ROPWFO>2.0.CO;2
[16] Knabb, R. D., and H. E. Fuelberg, 1997: A comparison of the first-guess dependence of precipitable water estimates from three techniques using GOES data. J. Appl. Meteor., 36, 417–427. doi: 10.1175/1520-0450(1997)036<0417:ACOTFG>2.0.CO;2
[17] Labbi, A., and A. Mokhnache, 2015: Estimating of total atmospheric water vapor content from MSG1-SEVIRI Observations. Atmos. Meas. Tech. Discuss., 8, 8903–8923. doi: 10.5194/amtd-8-8903-2015
[18] Liu, H. L., S. H. Tang, J. Y. Hu, et al., 2017: An improved physi-cal split-window algorithm for precipitable water vapor retrieval exploiting the water vapor channel observations. Remote Sens. Environ., 194, 366–378. doi: 10.1016/j.rse.2017.03.031
[19] Min, M., and Z. B. Zhang, 2014: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. J. Quant. Spectrosc. Radiat. Transfer, 142, 25–36. doi: 10.1016/j.jqsrt.2014.03.014
[20] Min, M., C. Q. Wu, C. Li, et al., 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: FengYun-4 series. J. Meteor. Res., 31, 708–719. doi: 10.1007/s13351-017-6161-z
[21] Min, W. B., B. Li, J. Peng, et al., 2015: Evaluation of total precipitable water derived from FY-2E satellite data over the southeast of Tibetan Plateau and its adjacent areas. Resour. Environ. Yangtze Basin, 24, 625–631. (in Chinese)
[22] Muller, B. M., and H. E. Fuelberg, 1990: A simulation and diagnostic study of water vapor image dry bands. Mon. Wea. Rev., 118, 705–722. doi: 10.1175/1520-0493(1990)118<0705:ASADSO>2.0.CO;2
[23] Ottle, C., S. Outalha, C. Francois, et al., 1997: Estimation of total atmospheric water vapor content from split-window radiance measurements. Remote Sens. Environ., 61, 410. doi: 10.1016/S0034-4257(97)00055-2
[24] Sassen, K., Z. E. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/CloudʜAerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res. Atmos., 113, D00A12. doi: 10.1029/2008JD009972
[25] Saunders, R., 2002: RTTOV-7 Users Guide. Met Office, London, 21 pp. Available at https://nwpsaf.eu/oldsite/deliverables/rtm/rttov7_ug.pdf.
[26] Seemann, S. W., J. Li, L. E. Gumley, et al., 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. Proceedings of SPIE 4895, Applications with Weather Satellites, SPIE, Hangzhou, China, 168–176, doi: 10.1117/12.466686.
[27] Shi, C. X., and Z. H. Xie, 2005: Operational method of total precipitable water retrieved from satellite multi-channels’ infrared data. Journal of Infrared and Millimeter Waves, 24, 304–308. (in Chinese) doi: 10.3321/j.issn:1001-9014.2005.04.015
[28] Shi, F. L., J. Y. Xin, L. K. Yang, et al., 2018: The first validation of the precipitable water vapor of multisensor satellites over the typical regions in China. Remote Sens. Environ., 206, 107–122. doi: 10.1016/j.rse.2017.12.022
[29] Steranka, J., L. J. Allison, and V. V. Salomonson, 1973: Application of Nimbus 4 THIR 6.7 μm observations to regional and global moisutre and wind field analyses. J. Appl. Meteor., 12, 386–395. doi: 10.1175/1520-0450(1973)012<0386:aontot>2.0.co;2
[30] Suggs, R. J., G. J. Jedlovec, and A. R. Guillory, 1998: Retrieval of geophysical parameters from GOES: Evaluation of a split-window technique. J. Appl. Meteor., 37, 1205–1227. doi: 10.1175/1520-0450(1998)037<1205:ROGPFG>2.0.CO;2
[31] Sun, D. L., Y. Y. Yu, L. Fang, et al., 2013: Toward an operational land surface temperature algorithm for GOES. J. Appl. Meteor. Climatol., 52, 1974–1986. doi: 10.1175/JAMC-D-12-0132.1
[32] Tang, B. H., and Z.-L. Li, 2008: Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data. Remote Sens. Environ., 112, 3482–3492. doi: 10.1016/j.rse.2008.04.004
[33] Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–324. doi: 10.1175/2008BAMS2634.1
[34] Xu, J. M., W. J. Zhang, J. Yang, et al., 2008: Fengyun-2 Satellite Operational Products and Data Formats Practical Handbook. China Meteorological Press, Beijing, 67–71. (in Chinese)
[35] Zheng, J., C. X. Shi, Q. F. Lu, et al., 2010: Evaluation of total precipitable water over East Asia from FY-3A/VIRR infrared radiances. Atmos. Oceanic Sci. Lett., 3, 93–99. doi: 10.1080/16742834.2010.11446853
[36] Zhu, Y. J., W. B. Li, and Y. Chen, 1998: Study of total precipitable water by GMS-5. Quart. J. Appl. Meteor., 9, 8–14. (in Chinese)