[1] Angevine, W. M., A. B. White, and S. K. Avery, 1994: Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler. Bound.-Layer Meteor., 68, 375–385. doi: 10.1007/BF00706797
[2] Ao, C. O., D. E. Waliser, S. K. Chan, et al., 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res. Atmos., 117, D16117. doi: 10.1029/2012JD017598
[3] Ball, F. K., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86, 483–494. doi: 10.1002/qj.49708637005
[4] Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity–variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 2700–2719. doi: 10.1175/JAS3776.1
[5] Barlow, J. F., T. M. Dunbar, E. G. Nemitz, et al., 2011: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II. Atmos. Chem. Phys., 11, 2111–2125. doi: 10.5194/acp-11-2111-2011
[6] Batchvarova, E., and S.-E. Gryning, 1991: Applied model for the growth of the daytime mixed layer. Bound.-Layer Meteor., 56, 261–274. doi: 10.1007/BF00120423
[7] Batchvarova, E., and S.-E. Gryning, 1994: An applied model for the height of the daytime mixed layer and the entrainment zone. Bound.-Layer Meteor., 71, 311–323. doi: 10.1007/bf00713744
[8] Beyrich, F., 1995: Mixing-height estimation in the convective boundary layer using sodar data. Bound.-Layer Meteor., 74, 1–18. doi: 10.1007/bf00715708
[9] Beyrich, F., 1997: Mixing height estimation from sodar data—A critical discussion. Atmos. Environ., 31, 3941–3953. doi: 10.1016/s1352-2310(97)00231-8
[10] Bravo-Aranda, J. A., G. De Arruda Moreira, F. Navas-Guzmán, et al., 2017: A new methodology for PBL height estimations based on lidar depolarization measurements: Analysis and comparison against MWR and WRF model-based results. Atmos. Chem. Phys., 17, 6839–6851. doi: 10.5194/acp-17-6839-2017
[11] Brost, R. A., and J. C. Wyngaard, 1978: A model study of the stably stratified planetary boundary layer. J. Atmos. Sci., 35, 1427–1440. doi: 10.1175/1520-0469(1978)035<1427:AMSOTS>2.0.CO;2
[12] Caicedo, V., B. Rappenglück, B. Lefer, et al., 2017: Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data. Atmos. Meas. Tech., 10, 1609–1622. doi: 10.5194/amt-10-1609-2017
[13] Casasanta, G., I. Pietroni, I. Petenko, et al., 2014: Observed and modelled convective mixing-layer height at Dome C, Antarctica. Bound.-Layer Meteor., 151, 597–608. doi: 10.1007/s10546-014-9907-5
[14] Chanin, M. L., A. Garnier, A. Hauchecorne, et al., 1989: A Doppler lidar for measuring winds in the middle atmosphere. Geophys. Res. Lett., 16, 1273–1276. doi: 10.1029/GL016i011p01273
[15] Cheng, S. Y., D. L. Xi, B. N. Zhang, et al., 1997: Study on the determination and calculating method of atmospheric mixing layer height. China Environ. Sci., 17, 512–516. (in Chinese)
[16] Cohn, S. A., and W. M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteor., 39, 1233–1247. doi: 10.1175/1520-0450(2000)039<1233:blhaez>2.0.co;2
[17] Collaud Coen, M., C. Praz, A. Haefele, et al., 2014: Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model. Atmos. Chem. Phys., 14, 13205–13221. doi: 10.5194/acp-14-13205-2014
[18] Collis, R. T. H., and M. G. H. Ligda, 1964: Laser radar echoes from the clear atmosphere. Nature, 203, 508. doi: 10.1038/203508a0
[19] Collis, R. T. H., F. G. Fernald, and M. G. H. Ligda, 1964: Laser radar echoes from a stratified clear atmosphere. Nature, 203, 1274–1275. doi: 10.1038/2031274a0
[20] Dai, C., Q. Wang, J. A. Kalogiros, et al., 2014: Determining boundary-layer height from aircraft measurements. Bound.-Layer Meteor., 152, 277–302. doi: 10.1007/s10546-014-9929-z
[21] Davis, K. J., N. Gamage, C. R. Hagelberg, et al., 2000: An objective method for deriving atmospheric structure from airborne lidar observations. J. Atmos. Oceanic Technol., 17, 1455–1468. doi: 10.1175/1520-0426(2000)017<1455:AOMFDA>2.0.CO;2
[22] de Arruda Moreira, G., M. T. A. Marques, W. Nakaema, et al., 2015: Planetary boundary layer height estimation from Doppler wind lidar measurements, radiosonde and hysplit model comparison. Ópt. Pura Y Apl., 48, 179–183. doi: 10.7149/OPA.48.3.179
[23] de Arruda Moreira, G., J. L. Guerrero-Rascado, J. A. Bravo-Aranda, et al., 2018: Study of the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in Southern Iberian Peninsula. Atmos. Res., 213, 185–195. doi: 10.1016/j.atmosres.2018.06.007
[24] Deardorff, J. W., 1979: Prediction of convective mixed-layer entrainment for realistic capping inversion structure. J. Atmos. Sci., 36, 424–436. doi: 10.1175/1520-0469(1979)036<0424:POCMLE>2.0.CO;2
[25] Deng, T., D. Wu, X. J. Deng, et al., 2014: A vertical sounding of severe haze process in Guangzhou area. Sci. China Earth Sci., 57, 2650–2656. doi: 10.1007/s11430-014-4928-y
[26] Ding, A. J., C. B. Fu, X. Q. Yang, et al., 2013: Intense atmosphe-ric pollution modifies weather: A case of mixed biomass burn-ing with fossil fuel combustion pollution in eastern China. Atmos. Chem. Phys., 13, 10545–10554. doi: 10.5194/acp-13-10545-2013
[27] Du, C. L., S. Y. Liu, X. Yu, et al., 2013: Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China. Aerosol Air Qual. Res., 13, 1598–1607. doi: 10.4209/aaqr.2012.10.0274
[28] Emeis, S., and M. Türk, 2004: Frequency distributions of the mixing height over an urban area from SODAR data. Meteor. Z., 13, 361–367. doi: 10.1127/0941-2948/2004/0013-0361
[29] Emeis, S., and K. Schäfer, 2006: Remote sensing methods to investigate boundary-layer structures relevant to air pollution in cities. Bound.-Layer Meteor., 121, 377–385. doi: 10.1007/s10546-006-9068-2
[30] Emeis, S., K. Schäfer, and C. Münkel, 2008: Surface-based remote sensing of the mixing-layer height—A review. Meteor. Z., 17, 621–630. doi: 10.1127/0941-2948/2008/0312
[31] Eresmaa, N., A. Karppinen, S. M. Joffre, et al, 2006: Mixing height determination by ceilometer. Atmos. Chem. Phys., 6, 1485–1493. doi: 10.5194/acp-6-1485-2006
[32] Fairall, C. W., 1991: The humidity and temperature sensitivity of clear-air radars in the convective boundary layer. J. Appl. Meteor., 30, 1064–1074. doi: 10.1175/1520-0450(1991)030<1064:THATSO>2.0.CO;2
[33] Fan, S. H., Z. Q. Gao, J. Kalogiros, et al., 2019: Estimate of boundary-layer depth in Nanjing city using aerosol lidar data during 2016–2017 winter. Atmos. Environ., 205, 67–77. doi: 10.1016/j.atmosenv.2019.02.022
[34] Flamant, C., J. Pelon, P. H. Flamant, et al., 1997: Lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. Bound.-Layer Meteor., 83, 247–284. doi: 10.1023/a:1000258318944
[35] Friedrich, K., J. K. Lundquist, M. Aitken, et al., 2012: Stability and turbulence in the atmospheric boundary layer: A comparison of remote sensing and tower observations. Geophys. Res. Lett., 39, L03801. doi: 10.1029/2011gl050413
[36] Gao, D. Y., 1994: Advance in studing air/sea exchange and air/sea boundary layer observation. Prog. Geophys., 9, 111–118. (in Chinese)
[37] Garratt, J. R., 1994: Review: The atmospheric boundary layer. Earth-Sci. Rev., 37, 89–134. doi: 10.1016/0012-8252(94)90026-4
[38] Gassmann, M. I., and N. A. Mazzeo, 2001: Nocturnal stable boundary layer height model and its application. Atmos. Res., 57, 247–259. doi: 10.1016/S0169-8095(01)00072-2
[39] Ge, S. R., 2017: Research on vertical air velocity and planetary boundary height detection by the wind profiler. Master dissertation, National University of Defense Technology, Changsha, China. 75 pp, doi: 10.27052/d.cnki.gzjgu.2017.000916.(in Chinese)
[40] Gryning, S.-E., and E. Batchvarova, 1994: Parametrization of the depth of the entrainment zone above the daytime mixed layer. Quart. J. Roy. Meteor. Soc., 120, 47–58. doi: 10.1002/qj.49712051505
[41] Gui, K., H. Z. Che, Y. Q. Wang, et al., 2019: Satellite-derived PM2.5 concentration trends over eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters. Environ. Pollut., 247, 1125–1133. doi: 10.1016/j.envpol.2019.01.056
[42] Haeffelin, M., F. Angelini, Y. Morille, et al., 2012: Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe. Bound.-Layer Meteor., 143, 49–75. doi: 10.1007/s10546-011-9643-z
[43] Han, B., C. L. Zhao, S. H. Lü, et al., 2015: A diagnostic analysis on the effect of the residual layer in convective boundary la-yer development near Mongolia using 20th century reanaly-sis data. Adv. Atmos. Sci., 32, 807–820. doi: 10.1007/s00376-014-4164-6
[44] He, Q. S., J. T. Mao, J. Y. Chen, et al., 2006: Observational and modeling studies of urban atmospheric boundary-layer height and its evolution mechanisms. Atmos. Environ., 40, 1064–1077. doi: 10.1016/j.atmosenv.2005.11.016
[45] Hennemuth, B., and A. Lammert., 2006: Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter. Bound.-Layer Meteor., 120, 181–200. doi: 10.1007/s10546-005-9035-3
[46] Hewison, T. J., 2006: Profiling temperature and humidity by ground-based microwave radiometers. Ph.D. dissertation, University of Reading, Reading, Berkshire, UK, 292 pp.
[47] Holzworth, G. C., 1964: Estimates of mean maximum mixing depths in the contiguous United States. Mon. Wea. Rev., 92, 235–242. doi: 10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2
[48] Hooper, W. P., and E. W. Eloranta, 1986: Lidar measurements of wind in the planetary boundary layer: The method, accuracy and results from joint measurements with radiosonde and kytoon. J. Climate Appl. Meteor., 25, 990–1001. doi: 10.1175/1520-0450(1986)025<0990:LMOWIT>2.0.CO;2
[49] Hu, M. B., and M. Y. Li, 2010: The development and technologic status of wind profiling radar. Scientia Meteor. Sinica, 30, 724–729. (in Chinese) doi: 10.3969/j.issn.1009-0827.2010.05.021
[50] Huang, M., Z. Q. Gao, S. G. Miao, et al., 2017: Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015. Bound.-Layer Meteor., 162, 503–522. doi: 10.1007/s10546-016-0205-2
[51] Hyun, Y. K., K. E. Kim, and K. J. Ha, 2005: A comparison of methods to estimate the height of stable boundary layer over a temperate grassland. Agric. For. Meteor., 132, 132–142. doi: 10.1016/j.agrformet.2005.03.010
[52] Joffre, S. M., M. Kangas, M. Heikinheimo, et al., 2001: Variability of the stable and unstable atmospheric boundary-layer height and its scales over a boreal forest. Bound.-Layer Meteor., 99, 429–450. doi: 10.1023/a:1018956525605
[53] Kallistratova, M. A., I. V. Petenko, R. D. Kouznetsov, et al., 2018: Sodar sounding of the atmospheric boundary layer: Review of studies at the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. Izv. Atmos. Ocean. Phys., 54, 242–256. doi: 10.1134/S0001433818030088
[54] Khaykin, S. M., A. Hauchecorne, J. Porteneuve, et al, 2016: Ground-based Rayleigh–Mie Doppler lidar for wind measurements in the middle atmosphere. EPJ Web Conf., 119, 13005. doi: 10.1051/epjconf/201611913005
[55] Kim, D. K., and D. I. Lee, 2015: Atmospheric thickness and verti-cal structure properties in wintertime precipitation events from microwave radiometer, radiosonde and wind profiler observations. Meteor. Appl., 22, 599–609. doi: 10.1002/met.1494
[56] Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 1052–1068. doi: 10.1175/1520-0469(2000)057<1052:alesso>2.0.co;2
[57] Kotthaus, S., and C. S. B. Grimmond, 2018: Atmospheric boundary-layer characteristics from ceilometer measurements. Part 1: A new method to track mixed layer height and classify clouds. Quart. J. Roy. Meteor. Soc., 144, 1525–1538. doi: 10.1002/qj.3299
[58] Kursinski, E. R., G. A. Hajj, W. I. Bertiger, et al., 1996: Initial results of radio occultation observations of earth’s atmosphere using the global positioning system. Science, 271, 1107–1110. doi: 10.1126/science.271.5252.1107
[59] Lange, D., J. Tiana-Alsina, U. Saeed, et al., 2014: Atmospheric boundary layer height monitoring using a Kalman filter and backscatter lidar returns. IEEE Trans. Geosci. Remote Sens., 52, 4717–4728. doi: 10.1109/tgrs.2013.2284110
[60] LeMone, M. A., M. Tewari, F. Chen, et al., 2014: Objectively determined fair-weather NBL features in ARW-WRF and their comparison to CASES-97 observations. Mon. Wea. Rev., 142, 2709–2732. doi: 10.1175/mwr-d-13-00358.1
[61] Lewis, J. R., E. J. Welton, A. M. Molod, et al., 2013: Improved boundary layer depth retrievals from MPLNET. J. Geophys. Res. Atmos., 118, 9870–9879. doi: 10.1002/jgrd.50570
[62] Li, H., Y. Yang, X. M. Hu, et al., 2017: Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data. J. Geophys. Res. Atmos., 122, 4578–4593. doi: 10.1002/2016JD025620
[63] Li, Q. H., B. G. Wu, J. L. Liu, et al., 2020a: Characteristics of the atmospheric boundary layer and its relation with PM2.5 during haze episodes in winter in the North China Plain. Atmos. Environ., 223, 117265. doi: 10.1016/j.atmosenv.2020.117265
[64] Li, Q. H., H. S. Zhang, T. T. Ju, et al., 2020b: Experimental research on the characteristics of the atmospheric boundary la-yer in the semi-arid North China. Acta Sci. Nat. Univ. Pekinensis, 56, 215–222. (in Chinese) doi: 10.13209/j.0479-8023.2019.125
[65] Li, X., J. N. Quan, F. Wang, et al., 2018: Evaluation of the method for planetary boundary layer height retrieval by lidar and its application in Beijing. Chinese J. Atmos. Sci., 42, 435–446. (in Chinese) doi: 10.3878/j.issn.1006-9895.1710.17173
[66] Li, Z. Q., J. P. Guo, A. J. Ding, et al., 2017: Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev., 4, 810–833. doi: 10.1093/nsr/nwx117
[67] Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292–309. doi: 10.1002/qj.49709440106
[68] Liu, B. M., Y. Y. Ma, W. Gong, et al., 2018: Determination of boundary layer top on the basis of the characteristics of atmospheric particles. Atmos. Environ., 178, 140–147. doi: 10.1016/j.atmosenv.2018.01.054
[69] Liu, C., Y. Z. Li, and R. B. Jiang, 1985: A simple model for predicting the inversion layer height in the stable boundary layer. Meteor. Mon., 11, 31–33. (in Chinese)
[70] Liu, H. Y., 2011: The temperature profile comparison between the ground-based microwave radiometer and the other instrument for the recent three years. Acta Meteor. Sinica, 69, 719–728. (in Chinese) doi: 10.11676/qxxb2011.063
[71] Liu, H. Z., L. Wang, and Q. Du, 2018: An overview of recent studies on atmospheric boundary layer physics at LAPC (2012–2017). Chinese J. Atmos. Sci., 42, 823–832. (in Chinese) doi: 10.3878/j.issn.1006-9895.1802.17274
[72] Liu, J. Z., and Q. Zhang, 2010: Evaluation and analysis of retrie-val products of ground-based microwave radiometer. Meteor. Sci. Technol., 38, 325–331. (in Chinese) doi: 10.19517/j.1671-6345.2010.03.011
[73] Liu, S. Y., and X. Z. Liang, 2010: Observed diurnal cycle climatology of planetary boundary layer height. J. Climate, 23, 5790–5809. doi: 10.1175/2010JCLI3552.1
[74] Liu, X. H., and E. Ohtaki, 1997: An independent method to determine the height of the mixed layer. Bound.-Layer Meteor., 85, 497–504. doi: 10.1023/A:1000510130752
[75] Ma, M. J., Z. X. Pu, S. G. Wang, et al., 2011: Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in Northwest China. Bound.-Layer Meteor., 140, 163–176. doi: 10.1007/s10546-011-9608-2
[76] Mahrt, L., R. C. Heald, D. H. Lenschow, et al., 1979: An observational study of the structure of the nocturnal boundary layer. Bound.-Layer Meteor., 17, 247–264. doi: 10.1007/bf00117983
[77] Marsham, J. H., D. J. Parker, C. M. Grams, et al., 2008: Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmos. Chem. Phys., 8, 6979–6993. doi: 10.5194/acp-8-6979-2008
[78] Melfi, S. H., J. D. Spinhirne, S. H. Chou, et al., 1985: Lidar observations of vertically organized convection in the planetary boundary layer over the ocean. J. Climate Appl. Meteor., 24, 806–821. doi: 10.1175/1520-0450(1985)024<0806:LOOVOC>2.0.CO;2
[79] Melgarejo, J. W., and J. W. Deardorff, 1974: Stability functions for the boundary-layer resistance laws based upon observed boundary-layer heights. J. Atmos. Sci., 31, 1324–1333. doi: 10.1175/1520-0469(1974)031<1324:sfftbl>2.0.co;2
[80] Menut, L., C. Flamant, J. Pelon, et al., 1999: Urban boundary-la-yer height determination from lidar measurements over the Paris area. Appl. Opt., 38, 945–954. doi: 10.1364/ao.38.000945
[81] Münkel, C., and J. Räsänen, 2004: New optical concept for commercial lidar ceilometers scanning the boundary layer. Proc. SPIE Remote Sensing of Clouds and the Atmosphere , SPIE, Maspalomas, Canary Islands, Spain, 364–374, doi: 10.1117/12.565540.
[82] Nieuwstadt, F. T. M., 1981: The steady-state height and resistance laws of the nocturnal boundary layer: Theory compared with cabauw observations. Bound.-Layer Meteor., 20, 3–17. doi: 10.1007/bf00119920
[83] Nieuwstadt, F. T. M., and H. Tennekes, 1981: A rate equation for the nocturnal boundary-layer height. J. Atmos. Sci., 38, 1418–1428. doi: 10.1175/1520-0469(1981)038<1418:AREFTN>2.0.CO;2
[84] Nozaki, K. Y., 1974: Mixing depth model using hourly surface observations. Bull. Amer. Meteor. Soc., 55, 867–867.
[85] O’Connor, E. J., A. J. Illingworth, I. M. Brooks, et al., 2010: A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements. J. Atmos. Oceanic Technol., 27, 1652–1664. doi: 10.1175/2010JTECHA1455.1
[86] Pearson, G., F. Davies, and C. Collier, 2010: Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar. Atmos. Chem. Phys., 10, 5891–5901. doi: 10.5194/acp-10-5891-2010
[87] Peng, J., C. S. B. Grimmond, X. S. Fu, et al., 2017: Ceilometer-based analysis of Shanghai’s boundary layer height (under rain- and fog-free conditions). J. Atmos. Oceanic Technol., 34, 749–764. doi: 10.1175/JTECH-D-16-0132.1
[88] Poltera, Y., G. Martucci, M. Collaud Coen, et al., 2017: PathfinderTURB: An automatic boundary layer algorithm. Development, validation and application to study the impact on in situ measurements at the Jungfraujoch. Atmos. Chem. Phys., 17, 10051–10070. doi: 10.5194/acp-17-10051-2017
[89] Qu, Y. W., Y. Han, Y. H. Wu, et al., 2017: Study of PBLH and its correlation with particulate matter from one-year observation over Nanjing, Southeast China. Remote Sens., 9, 668. doi: 10.3390/rs9070668
[90] Quan, J. N., Y. Gao, Q. Zhang, et al., 2013: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations. Particuology, 11, 34–40. doi: 10.1016/j.partic.2012.04.005
[91] Quan, J. N., Y. J. Dou, X. J. Zhao, et al., 2020: Regional atmospheric pollutant transport mechanisms over the North China Plain driven by topography and planetary boundary layer processes. Atmos. Environ., 221, 117098. doi: 10.1016/j.atmosenv.2019.117098
[92] Raman, S., B. Templeman, S. Templeman, et al., 1990: Structure of the Indian southwesterly pre-monsoon and monsoon boun-dary layers: Observations and numerical simulation. Atmos. Environ., 24, 723–734. doi: 10.1016/0960-1686(90)90273-P
[93] Ratnam, M. V., and S. G. Basha, 2010: A robust method to determine global distribution of atmospheric boundary layer top from COSMIC GPS RO measurements. Atmos. Sci. Lett., 11, 216–222. doi: 10.1002/asl.277
[94] Ren, Y., H. S. Zhang, W. Wei, et al., 2019a: Effects of turbulence structure and urbanization on the heavy haze pollution process. Atmos. Chem. Phys., 19, 1041–1057. doi: 10.5194/acp-19-1041-2019
[95] Ren, Y., H. S. Zhang, W. Wei, et al., 2019b: A study on atmospheric turbulence structure and intermittency during heavy haze pollution in the Beijing area. Sci. China Earth Sci., 62, 2058–2068. doi: 10.1007/s11430-019-9451-0
[96] Richardson, H., S. Basu, and A. A. M. Holtslag, 2013: Improving stable boundary-layer height estimation using a stability-dependent critical bulk Richardson number. Bound.-Layer Meteor., 148, 93–109. doi: 10.1007/s10546-013-9812-3
[97] Russell, P. B., E. E. Uthe, F. L. Ludwig, et al., 1974: A compari-son of atmospheric structure as observed with monostatic acoustic sounder and lidar techniques. J. Geophys. Res. Atmos., 79, 5555–5566. doi: 10.1029/JC079i036p05555
[98] Saeed, U., F. Rocadenbosch, and S. Crewell, 2016: Adaptive estimation of the stable boundary layer height using combined lidar and microwave radiometer observations. IEEE Trans. Geosci. Remote Sens., 54, 6895–6906. doi: 10.1109/tgrs.2016.2586298
[99] San José, R., and J. Casanova, 1988: An empirical method to evaluate the height of the convective boundary layer by using small mast measurements. Atmos. Res., 22, 265–273. doi: 10.1016/0169-8095(88)90021-x
[100] Saraiva, L., and N. Krusche, 2013: Estimation of the boundary la-yer height in the southern region of Brazil. Amer. J. Environ. Engi., 3, 63–70. doi: 10.5923/j.ajee.20130301.09
[101] Sawyer, V., and Z. Q. Li, 2013: Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer. Atmos. Environ., 79, 518–528. doi: 10.1016/j.atmosenv.2013.07.019
[102] Schween, J. H., A. Hirsikko, U. Löhnert, et al., 2014: Mixing-la-yer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment. Atmos. Meas. Tech., 7, 3685–3704. doi: 10.5194/amt-7-3685-2014
[103] Seibert, P., F. Beyrich, S. E. Gryning, et al., 2000: Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001–1027. doi: 10.1016/s1352-2310(99)00349-0
[104] Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res. Atmos., 115, D16113. doi: 10.1029/2009JD013680
[105] Shen, J., L. H. Shen, X. Han, et al., 2017: Combined observation of boundary layer using lidar and microwave radiometer in Suzhou. Meteor. Sci. Technol., 45, 425–429. (in Chinese) doi: 10.19517/j.1671-6345.20160252
[106] Sheng, P. X., J. T. Mao, J. G. Li, et al., 2013: Atmospheric Physics. Peking University Press, Beijing, 243-275. (in Chinese)
[107] Shi, Y., F. Hu, G. Q. Fan, et al., 2019a: Multiple technical observations of the atmospheric boundary layer structure of a red-alert haze episode in Beijing. Atmos. Meas. Tech., 12, 4887–4901. doi: 10.5194/amt-12-4887-2019
[108] Shi, Y., F. Hu, W. C. Ding, et al., 2019b: Comparitive analysis of planetary-boundary-layer height based on aerosol lidar and radiosonde. Climatic Environ. Res., 24, 650–662. (in Chinese) doi: 10.3878/j.issn.1006-9585.2019.19051
[109] Shi, Y., F. Hu, Z. S. Xiao, et al., 2020: Comparison of four different types of planetary boundary layer heights during a haze episode in Beijing. Sci. Total Environ., 711, 134928. doi: 10.1016/j.scitotenv.2019.134928
[110] Shukla, K. K., D. V. Phanikumar, R. K. Newsom, et al., 2014: Estimation of the mixing layer height over a high altitude site in Central Himalayan region by using Doppler lidar. J. Atmos. Sol.-Terr. Phys., 109, 48–53. doi: 10.1016/j.jastp.2014.01.006
[111] Sicard, M., C. Perez, A. Comeren, et al., 2004: Determination of the mixing layer height from regular lidar measurements in the Barcelona area. Proc. SPIE Remote Sensing of Clouds and the Atmosphere VIII, SPIE, Barcelona, Spain, 505–516, doi: 10.1117/12.511481.
[112] Song, X. Z., H. S. Zhang, X. J. Liu, et al., 2006: Determination of atmospheric boundary layer height in unstable conditions over the middle Tibetan Plateau. Acta Sci. Nat. Univ. Pekinensis, 42, 328–333. (in Chinese) doi: 10.13209/j.0479-8023.2006.062
[113] State Bureau of Quality and Technical Supervision (SBQTS) and State Environmental Protection Administration (SEPA) of China, 1991: GB/T 3840-1991: Technical methods for making local emission STANDARDs of air pollutants. Standards Press of China, Beijing, 1–17. (in Chinese)
[114] Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag, 2007a: Diagnostic equations for the stable boundary layer height: Evaluation and dimensional analysis. J. Appl. Meteor. Climatol., 46, 212–225. doi: 10.1175/jam2454.1
[115] Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag, 2007b: Comments on deriving the equilibrium height of the stable boundary layer. Quart. J. Roy. Meteor. Soc., 133, 261–264. doi: 10.1002/qj.26
[116] Steyn, D. G., M. Baldi, and R. M. Hoff, 1999: The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Oceanic Technol., 16, 953–959. doi: 10.1175/1520-0426(1999)016<0953:TDOMLD>2.0.CO;2
[117] Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, Dordrecht, 1–545, doi: 10.1007/978-94-009-3027-8.
[118] Su, T. N., Z. Q. Li, and R. Kahn, 2020: A new method to retrieve the diurnal variability of planetary boundary layer height from lidar under different thermodynamic stability conditions. Remote Sens. Environ., 237, 111519. doi: 10.1016/j.rse.2019.111519
[119] Syrakov, E., 2015: General diagnostic equations and regime analysis for the height of the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 141, 2869–2879. doi: 10.1002/qj.2570
[120] Tennekes, H., 1973: A model for the dynamics of the inversion above a convective boundary layer. J. Atmos. Sci., 30, 558–567. doi: 10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2
[121] Tsaknakis, G., A. Papayannis, P. Kokkalis, et al., 2011: Inter-comparison of lidar and ceilometer retrievals for aerosol and planetary boundary layer profiling over Athens, Greece. Atmos. Meas. Tech., 4, 1261–1273. doi: 10.5194/amt-4-1261-2011
[122] Tucker, S. C., C. J. Senff, A. M. Weickmann, et al., 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673–688. doi: 10.1175/2008JTECHA1157.1
[123] Uthe, E., 1972: Lidar observations of the urban aerosol structure. Bull. Amer. Meteor. Soc., 53, 358–360. doi: 10.1175/1520-0477-53.4.358
[124] Vickers, D., and L. Mahrt, 2004: Evaluating formulations of stable boundary layer height. J. Appl. Meteor., 43, 1736–1749. doi: 10.1175/jam2160.1
[125] Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245–269. doi: 10.1007/bf02430331
[126] Wang, L., C. B. Xie, Y. Han, et al., 2012: Comparison of retrieval methods of planetary boundary layer height from lidar data. J. Atmos. Environ. Opt., 7, 241–247. (in Chinese) doi: 10.3969/j.issn.1673-6141.2012.04.001
[127] Wang, X. L., and W. Y. Xiong, 1993: Turbulence and thickness of ecoboundary layer. J. Nanjing For. Univ., 17, 9–15. (in Chinese) doi: 10.3969/j.jssn.1000-2006.1993.01.002
[128] Wang, Z., X. Cao, L. Zhang, et al., 2012: Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation. Atmos. Meas. Tech., 5, 1965–1972. doi: 10.5194/amt-5-1965-2012
[129] Wei, W., H. S. Zhang, X. H. Cai, et al., 2020: Influence of intermittent turbulence on air pollution and its dispersion in winter 2016/2017 over Beijing, China. J. Meteor. Res., 34, 176–188. doi: 10.1007/s13351-020-9128-4
[130] White, A. B., C. J. Senff, and R. M. Banta, 1999: A comparison of mixing depths observed by ground-based wind profilers and an airborne lidar. J. Atmos. Oceanic Technol., 16, 584–590. doi: 10.1175/1520-0426(1999)016<0584:ACOMDO>2.0.CO;2
[131] Xiang, Y., Q. H. Ye, J. G. Liu, et al., 2016: Retrieval of planetary boundary layer height based on image edge detection. Chinese J. Lasers, 43, 0704003. (in Chinese) doi: 10.3788/CJL201643.0704003
[132] Xu, G. R., R. Ware, W. G. Zhang, et al., 2014: Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy. Atmos. Res., 140–141, 85–94. doi: 10.1016/j.atmosres.2014.01.021
[133] Xu, G. R., B. K. Xi, W. G. Zhang, et al., 2015: Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings. J. Geophys. Res. Atmos., 120, 10,313–10,323. doi: 10.1002/2015JD023438
[134] Yamada, T., 1976: On the similarity functions A, B and C of the planetary boundary layer. J. Atmos. Sci., 33, 781–793. doi: 10.1175/1520-0469(1976)033<0781:OTSFAO>2.0.CO;2
[135] Yamada, T., 1979: Prediction of the nocturnal surface inversion height. J. Appl. Meteor., 18, 526–531. doi: 10.1175/1520-0450(1979)018<0526:POTNSI>2.0.CO;2
[136] Yang, F. Y., 2018: Comparison of determination methods and characteristics of boundary layer height in semi-arid area. Master dissertation, Lanzhou University, 80 pp. (in Chinese)
[137] Yang, F. Y., N. Zhang, L. F. Zhu, et al., 2016: Comparison of the mixing layer height determination methods using lidar and microwave radiometer. Plateau Meteor., 35, 1102–1111. (in Chinese) doi: 10.7522/j.issn.1000-0534.2015.00045
[138] Yang, T., Z. F. Wang, W. Zhang, et al., 2017: Technical note: Boundary layer height determination from lidar for improving air pollution episode modeling: Development of new algorithm and evaluation. Atmos. Chem. Phys., 17, 6215–6225. doi: 10.5194/acp-17-6215-2017
[139] Yin, J., C. Y. Gao, J. Hong, et al., 2019: Surface meteorological conditions and boundary layer height variations during an air pollution episode in Nanjing, China. J. Geophys. Res. Atmos., 124, 3350–3364. doi: 10.1029/2018JD029848
[140] Zeman, O., 1979: Parameterization of the dynamics of stable boundary layers and nocturnal jets. J. Atmos. Sci., 36, 792–804. doi: 10.1175/1520-0469(1979)036<0792:POTDOS>2.0.CO;2
[141] Zeman, O., and H. Tennekes, 1977: Parameterization of the turbulent energy budget at the top of the daytime atmospheric boundary layer. J. Atmos. Sci., 34, 111–123. doi: 10.1175/1520-0469(1977)034<0111:potteb>2.0.co;2
[142] Zhang, A. C., C. G. Sun, and Y. Tian, 1990: The observing results of atmospheric mixed layer in Beijing district and the assessment of theoretical models. Acta Meteor. Sinica, 48, 345–354. (in Chinese) doi: 10.11676/qxxb1990.042
[143] Zhang, Q., and S. Wang, 2008: A study on atmospheric boundary layer structure on a clear day in the arid region in Northwest China. Acta Meteor. Sinica, 66, 599–608. (in Chinese) doi: 10.11676/qxxb2008.057
[144] Zhang, Q., J. Zhang, J. Qiao, et al., 2011: Relationship of atmospheric boundary layer depth with thermodynamic processes at the land surface in arid regions of China. Sci. China Earth Sci., 54, 1586–1594. doi: 10.1007/s11430-011-4207-0
[145] Zhang, X. Y., X. D. Xu, Y. H. Ding, et al., 2019: The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China. Sci. China Earth Sci., 62, 1885–1902. doi: 10.1007/s11430-019-9343-3
[146] Zhao, H. J., H. Z. Che, X. G. Xia, et al., 2019: Climatology of mixing layer height in China based on multi-year meteorological data from 2000 to 2013. Atmos. Environ., 213, 90–103. doi: 10.1016/j.atmosenv.2019.05.047
[147] Zhao, L., B. Han, S. H. Lyu, et al., 2018: The different influence of the residual layer on the development of the summer convective boundary layer in two deserts in Northwest China. Theor. Appl. Climatol., 131, 877–888. doi: 10.1007/s00704-016-2014-4
[148] Zhao, M., M. Q. Miao, and Y. C. Wang, 1991: Boundary-Layer Meteorology Course. China Meteorological Press, Beijing, 217–219. (in Chinese)
[149] Zhong, J. T., X. Y. Zhang, Y. Q. Wang, et al., 2017: Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016. J. Meteor. Res., 31, 809–819. doi: 10.1007/s13351-017-7088-0
[150] Zhong, J. T., X. Y. Zhang, Y. S. Dong, et al., 2018: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016. Atmos. Chem. Phys., 18, 247–258. doi: 10.5194/acp-18-247-2018
[151] Zilitinkevich, S., and D. V. Mironov, 1996: A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer. Bound.-Layer Meteor., 81, 325–351. doi: 10.1007/bf02430334
[152] Zilitinkevich, S., and A. Baklanov, 2002: Calculation of the height of the stable boundary layer in practical applications. Bound.-Layer Meteor., 105, 389–409. doi: 10.1023/a:1020376832738
[153] Zilitinkevich, S., A. Baklanov, J. Rost, et al., 2002: Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Quart. J. Roy. Meteor. Soc., 128, 25–46. doi: 10.1256/00359000260498770
[154] Zilitinkevich, S., I. Esau, and A. Baklanov, 2007: Further comments on the equilibrium height of neutral and stable planetary boundary layers. Quart. J. Roy. Meteor. Soc., 133, 265–271. doi: 10.1002/qj.27
[155] Zou, J., J. N. Sun, A. J. Ding, et al., 2017: Observation-based estimation of aerosol-induced reduction of planetary boundary layer height. Adv. Atmos. Sci., 34, 1057–1068. doi: 10.1007/s00376-016-6259-8