[1] |
Dai, A. G., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the community climate system model. J. Climate, 17, 930–951. doi: 10.1175/1520-0442(2004)017<0930:TDCAID>2.0.CO;2 |
[2] |
Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828 |
[3] |
Dehecq, A., N. Gourmelen, A. S. Gardner, et al., 2019: Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci., 12, 22–27. doi: 10.1038/s41561-018-0271-9 |
[4] |
Duan, A. M., and Z. X. Xiao, 2015: Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep., 5, 13711. doi: 10.1038/srep13711 |
[5] |
Duan, A. M., G. X. Wu, Y. M. Liu, et al., 2012: Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci., 29, 978–992. doi: 10.1007/s00376-012-1220-y |
[6] |
Gao, Y. H., L. Cuo, and Y. X. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J. Climate, 27, 1876–1893. doi: 10.1175/JCLI-D-13-00321.1 |
[7] |
Gao, Y. H., J. W. Xu, and D. L. Chen, 2015a: Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J. Climate, 28, 2823–2841. doi: 10.1175/JCLI-D-14-00300.1 |
[8] |
Gao, Y. H., L. R. Leung, Y. X. Zhang, et al., 2015b: Changes in moisture flux over the Tibetan Plateau during 1979–2011: Insights from a high-resolution simulation. J. Climate, 28, 4185–4197. doi: 10.1175/JCLI-D-14-00581.1 |
[9] |
Gelaro, R., W. McCarty, M. J. Suárez, et al., 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454. doi: 10.1175/JCLI-D-16-0758.1 |
[10] |
Grotjahn, R., and J. Huynh, 2018: Contiguous US summer maxi-mum temperature and heat stress trends in CRU and NOAA climate division data plus comparisons to reanalyses. Sci. Rep., 8, 11146. doi: 10.1038/s41598-018-29286-w |
[11] |
Guo, D. L., and H. J. Wang, 2013: Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J. Geophys. Res. Atmos., 118, 5216–5230. doi: 10.1002/jgrd.50457 |
[12] |
Hahn, C. J., and S. G. Warren, 1999: Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952–1996 (2009 update). ORNL/CDIAC-123, NDP-026C, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, 1–76, doi: 10.3334/CDIAC/cli.ndp026c. |
[13] |
Hersbach, H., P. De Rosnay, B. Bell, et al., 2018: ERA Report Series 27: Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP. ECMWF, Shinfield Park, Reading, England, 8–10, doi: 10.21957/tkic6g3wm. |
[14] |
Ji, P., X. Yuan, and D. Li, 2020: Atmospheric radiative processes accelerate ground surface warming over the southeastern Tibetan Plateau during 1998–2013. J. Climate, 33, 1881–1895. doi: 10.1175/JCLI-D-19-0410.1 |
[15] |
Jiao, J. J., X. T. Zhang, Y. Liu, et al., 2015: Increased water storage in the Qaidam basin, the north Tibet Plateau from GRACE gravity data. PLoS One, 10, e0141442. doi: 10.1371/journal.pone.0141442 |
[16] |
Kaiser, D. P., 2000: Decreasing cloudiness over China: An updated analysis examining additional variables. Geophys. Res. Lett., 27, 2193–2196. doi: 10.1029/2000GL011358 |
[17] |
Kobayashi, S., Y. Ota, Y. Harada, et al., 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48. doi: 10.2151/jmsj.2015-001 |
[18] |
Kuang, X. X., and J. J. Jiao, 2016: Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos., 121, 3979–4007. doi: 10.1002/2015JD024728 |
[19] |
Liu, X. D., and B. D. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 1729–1742. doi: 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y |
[20] |
Mo, X., J. J. Wu, Q. Wang, et al., 2016: Variations in water storage in China over recent decades from GRACE observations and GLDAS. Nat. Hazards Earth Sys. Sci., 16, 469–482. doi: 10.5194/nhess-16-469-2016 |
[21] |
Qiu, J., 2014: Tibetan Plateau gets wired up for monsoon prediction. Nature, 514, 16–17. doi: 10.1038/514016a |
[22] |
Rienecker, M. R., M. J. Suarez, R. Gelaro, et al., 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 3624–3648. doi: 10.1175/JCLI-D-11-00015.1 |
[23] |
Rodell, M., P. R. Houser, U. Jambor, et al., 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394. doi: 10.1175/BAMS-85-3-381 |
[24] |
Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111. doi: 10.1175/JCLI3790.1 |
[25] |
Shen, M. G., S. L. Piao, S. Jeong, et al., 2015: Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA, 112, 9299–9304. doi: 10.1073/pnas.1504418112 |
[26] |
Shi, C. X., Z. H. Xie, H. Qian, et al., 2011: China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci., 54, 1430–1440. doi: 10.1007/s11430-010-4160-3 |
[27] |
Song, C. Q., L. H. Ke, B. Huang, et al., 2015: Can mountain glacier melting explains the grace-observed mass loss in the southeast Tibetan Plateau: From a climate perspective? Global Planet. Change, 124, 1–9. doi: 10.1016/j.gloplacha.2014.11.001 |
[28] |
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183–7192. doi: 10.1029/2000JD900719 |
[29] |
Vose, R. S., S. Applequist, M. J. Menne, et al., 2012: An intercomparison of temperature trends in the U.S. historical climatology network and recent atmospheric reanalyses. Geophys. Res. Lett., 39, L10703. doi: 10.1029/2012GL051387 |
[30] |
Wang, A. H., and X. B. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos., 117, D05102. doi: 10.1029/2011JD016553 |
[31] |
Wang, W., X. J. Wang, and P. Wang, 2014: Assessing the applicability of GLDAS monthly precipitation data in China. Adv. Water Sci., 25, 769–778. (in Chinese) doi: 10.14042/j.cnki.32.1309.2014.06.001 |
[32] |
Wang, W., W. Cui, X. J. Wang, et al., 2016: Evaluation of GLDAS-1 and GLDAS-2 forcing data and Noah model simulations over China at the monthly scale. J. Hydrometeor., 17, 2815–2833. doi: 10.1175/JHM-D-15-0191.1 |
[33] |
Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys., 56, 1102–1111. (in Chinese) doi: 10.6038/cjg20130406 |
[34] |
Wu, J., X. J. Gao, F. Giorgi, et al., 2017: Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset. Int. J. Climatol., 37, 788–800. doi: 10.1002/joc.5038 |
[35] |
Xia, Y. L., Z. C. Hao, C. X. Shi, et al., 2019: Regional and global land data assimilation systems: Innovations, challenges, and prospects. J. Meteor. Res., 33, 159–189. doi: 10.1007/s13351-019-8172-4 |
[36] |
Yanai, M., and C. F. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305–323. doi: 10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2 |
[37] |
Yang, K., H. Wu, J. Qin, et al., 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 79–91. doi: 10.1016/j.gloplacha.2013.12.001 |
[38] |
Yang, M. X., F. E. Nelson, N. I. Shiklomanov, et al., 2010: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev., 103, 31–44. doi: 10.1016/j.earscirev.2010.07.002 |
[39] |
Yang, Y., and R. C. Ren, 2017: On the contrasting decadal changes of diurnal surface temperature range between the Tibetan Plateau and southeastern China during the 1980s–2000s. Adv. Atmos. Sci., 34, 181–198. doi: 10.1007/s00376-016-6077-z |
[40] |
Yuan, X., P. Ji, L. Y. Wang, et al., 2018: High-resolution land surface modeling of hydrological changes over the Sanjiang-yuan region in the eastern Tibetan Plateau: 1. Model development and evaluation. J. Adv. Model. Earth Syst., 10, 2806–2828. doi: 10.1029/2018MS001412 |
[41] |
Zhang, G. L., Y. J. Zhang, J. W. Dong, et al., 2013: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA, 110, 4309–4314. doi: 10.1073/pnas.1210423110 |
[42] |
Zhang, G. Q., T. D. Yao, H. J. Xie, et al., 2014: Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J. Geophys. Res. Atmos., 119, 8552–8567. doi: 10.1002/2014JD021615 |
[43] |
Zhang, Y. Q., C. M. Liu, Y. H. Tang, et al., 2007: Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J. Geophys. Res. Atmos, 112, D12110. doi: 10.1029/2006JD008161 |
[44] |
Zhong, L., Z. B. Su, Y. M. Ma, et al., 2011: Accelerated changes of environmental conditions on the Tibetan Plateau caused by climate change. J. Climate, 24, 6540–6550. doi: 10.1175/JCLI-D-10-05000.1 |
[45] |
Zhou, C. L, Y. Y. He, and K. C. Wang, 2018: On the suitability of current atmospheric reanalyses for regional warming studies over China. Atmos. Chem. Phys., 18, 8113–8136. doi: 10.5194/acp-18-8113-2018 |
[46] |
Zhu, L. H., G. Huang, G. Z. Fan, et al., 2017: Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus. Adv. Atmos. Sci., 34, 1249–1262. doi: 10.1007/s00376-017-6298-9 |
[47] |
Zou, H, J. H. Zhu, L. B. Zhou, et al., 2014: Validation and application of reanalysis temperature data over the Tibetan Plateau. J. Meteor. Res., 28, 139–149. doi: 10.1007/s13351-014-3027-5 |