[1] Bi, B. G., X. L. Zhang, and K. Dai, 2017: Characteristics of 2016 severe convective weather and extreme rainfalls under the background of super El Niño. Chinese Sci. Bull., 62, 928–937. doi: 10.1360/N972016-01136
[2] Chen, J. Q., and S. Bordoni, 2014: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27, 3052–3072. doi: 10.1175/JCLI-D-13-00479.1
[3] Chen, T., H. F. Zhang, C. Yu, et al., 2020: Synoptic analysis of extreme Meiyu precipitation over Yangtze River Basin during June–July 2020. Meteor. Mon., 46, 1415–1426. (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.11.003
[4] Chen, Y., and P. M. Zhai, 2014: Two types of typical circulation pattern for persistent extreme precipitation in Central–Eastern China. Quart. J. Roy. Meteor. Soc., 140, 1467–1478. doi: 10.1002/qj.2231
[5] Chen, Y., and P. M. Zhai, 2015: Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River Valley. Quart. J. Roy. Meteor. Soc., 141, 1389–1403. doi: 10.1002/qj.2448
[6] Chen, Y., and P. M. Zhai, 2016: Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley. Climate Dyn., 47, 989–1006. doi: 10.1007/s00382-015-2885-6
[7] Chou, C., L.-F. Huang, J.-Y. Tu, et al., 2009: El Niño impacts on precipitation in the western North Pacific–East Asian sector. J. Climate, 22, 2039–2057. doi: 10.1175/2008JCLI2649.1
[8] Chou, C., J. C. H. Chiang, C.-W. Lan, et al., 2013a: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263–267. doi: 10.1038/ngeo1744
[9] Chou, C., T.-C. Wu, and P.-H. Tan, 2013b: Changes in gross moist stability in the tropics under global warming. Climate Dyn., 41, 2481–2496. doi: 10.1007/s00382-013-1703-2
[10] Ding, Y. H., Y. Y. Liu, and Z.-Z. Hu, 2021: The record-breaking Mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., 38, 1980–1993. doi: 10.1007/s00376-021-0361-2
[11] Ebita, A., S. Kobayashi, Y. Ota, et al., 2011: The Japanese 55-year Reanalysis “JRA-55”: An interim report. SOLA, 7, 149–152. doi: 10.2151/sola.2011-038
[12] Huang, S. N., and F. Huang, 2012: Spatial-temporal variations of dominant drought/flood modes and the associated atmospheric circulation and ocean events in rainy season over the east of China. J. Ocean Univ. China, 11, 137–146. doi: 10.1007/s11802-012-1813-1
[13] IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 1535 pp.
[14] Kane, R. P., 1999: Some characteristics and precipitation effects of the El Niño of 1997–1998. J. Atmos. Sol.-Terr. Phys., 61, 1325–1346. doi: 10.1016/S1364-6826(99)00087-5
[15] Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289–302. doi: 10.1007/BF00139728
[16] Kundzewicz, Z. W., 2005: Flood risk in the changing world—Yangtze floods. Climate Change and Yangtze Floods, T. Jiang, L. King, M. Gemmer, et al., Eds., Science Press, Beijing, 63–72.
[17] Liu, S. J., N. Wen, and L. Li, 2021: Dynamic and thermodynamic contributions to northern China dryness in El Niño developing summer. Int. J. Climatol., 41, 2878–2890. doi: 10.1002/joc.6995
[18] Liu, Y. Y., and Y. H. Ding, 2020: Characteristics and possible causes for the extreme Meiyu in 2020. Meteor. Mon., 46, 1393–1404. (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.11.001
[19] Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. The Global Circulation of the Atmosphere, T. Schneider, and A. H. Sobel, Eds., Princeton University Press, Princeton, 267–301.
[20] Oueslati, B., P. Yiou, and A. Jézéquel, 2019: Revisiting the dynamic and thermodynamic processes driving the record-breaking January 2014 precipitation in the southern UK. Sci. Rep., 9, 2859. doi: 10.1038/s41598-019-39306-y
[21] Rong, X. Y., R. H. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo-East Asian summer monsoon–ENSO relationship. Chinese Sci. Bull., 55, 2458–2468. doi: 10.1007/s11434-010-3098-3
[22] Shepherd, T. G., 2016: A common framework for approaches to extreme event attribution. Curr. Clim. Change Rep., 2, 28–38. doi: 10.1007/s40641-016-0033-y
[23] Si, D., Z.-Z. Hu, A. Kumar, et al., 2016: Is the interdecadal variation of the summer rainfall over eastern China associated with SST? Climate Dyn., 46, 135–146. doi: 10.1007/s00382-015-2574-5
[24] Su, B. D., M. Gemmer, and T. Jiang, 2008: Spatial and temporal variation of extreme precipitation over the Yangtze River Basin. Quatern. Int., 186, 22–31. doi: 10.1016/j.quaint.2007.09.001
[25] Sun, Y., T. J. Zhou, G. Ramstein, et al., 2016: Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Climate Dyn., 46, 1437–1457. doi: 10.1007/s00382-015-2656-4
[26] Sun, Y., G. Ramstein, L. Z. X. Li, et al., 2018: Quantifying East Asian summer monsoon dynamics in the ECP4.5 scenario with reference to the mid-Piacenzian warm period. Geophys. Res. Lett., 45, 12,523–12,533. doi: 10.1029/2018GL080061
[27] Takaya, Y., I. Ishikawa, C. Kobayashi, et al., 2020: Enhanced Meiyu-Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL-090671. doi: 10.1029/2020GL090671
[28] Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nat. Climate Change, 5, 725–730. doi: 10.1038/nclimate2657
[29] Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 3252–3265. doi: 10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2
[30] Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
[31] Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 1235–1248. doi: 10.1007/s00376-017-7016-3
[32] Wang, L. C., X. G. Sun, X. Q. Yang, et al., 2021: Contribution of water vapor to the record-breaking extreme Meiyu rainfall along the Yangtze River valley in 2020. J. Meteor. Res., 35, 557–570. doi: 10.1007/s13351-021-1030-1
[33] Wen, N., Z. Y. Liu, and Y. H. Liu, 2015: Direct impact of El Niño on East Asian summer precipitation in the observation. Climate Dyn., 44, 2979–2987. doi: 10.1007/s00382-015-2605-2
[34] Wen, N., Z. Y. Liu, and L. Li, 2019: Direct ENSO impact on East Asian summer precipitation in the developing summer. Climate Dyn., 52, 6799–6815. doi: 10.1007/s00382-018-4545-0
[35] Wen, N., L. Li, and J.-J. Luo, 2020: Direct impacts of different types of El Niño in developing summer on East Asian precipitation. Climate Dyn., 55, 1087–1104. doi: 10.1007/s00382-020-05315-1
[36] Xie, S.-P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747. doi: 10.1175/2008JCLI2544.1
[37] Xie, S.-P., Y. Kosaka, Y. Du, et al., 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411–432. doi: 10.1007/s00376-015-5192-6
[38] Yang, J. L., Q. Y. Liu, S.-P. Xie, et al., 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708. doi: 10.1029/2006GL028571
[39] Yao, J. C., T. J. Zhou, Z. Guo, et al., 2017: Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J. Climate, 30, 8825–8840. doi: 10.1175/JCLI-D-16-0372.1
[40] Ye, Y. B., and C. Qian, 2021: Conditional attribution of climate change and atmospheric circulation contributing to the record-breaking precipitation and temperature event of summer 2020 in southern China. Environ. Res. Lett., 16, 044058. doi: 10.1088/1748-9326/abeeaf
[41] Zhai, P. M., R. Yu, Y. J. Guo, et al., 2016: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. J. Meteor. Res., 30, 283–297. doi: 10.1007/s13351-016-6101-3
[42] Zhang, F. H., T. Chen, F. Zhang, et al., 2020: Extreme features of severe precipitation in Meiyu period over the middle and lower reaches of Yangtze River Basin in June–July 2020. Meteor. Mon., 46, 1405–1414. (in Chinese) doi: 10.7519/j.issn.1000-0526.2020.11.002
[43] Zhao, W., S. F. Chen, W. Chen, et al., 2019: Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dyn., 53, 2031–2046. doi: 10.1007/s00382-019-04762-9
[44] Zheng, J. Y., and C. Z. Wang, 2021: Influences of three oceans on record-breaking rainfall over the Yangtze River Valley in June 2020. Sci. China Earth Sci., 64, 1607–1618. doi: 10.1007/s11430-020-9758-9
[45] Zhou, Z.-Q., S.-P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. U. S. A., 118, e2022255118. doi: 10.1073/pnas.2022255118