[1] Bowman, K. W., D. T. Shindell, H. M. Worden, et al., 2013: Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmos. Chem. Phys., 13, 4057–4072. doi: 10.5194/acp-13-4057-2013
[2] Chen, Y., 2006: A study of the southeast Asian summer monsoon onset, evolution and its influence on the weather and climate over the southwest of China. Ph.D. dissertation, Nanjing University of Information Science & Technology, Nanjing, 152 pp. (in Chinese)
[3] Chiodi, A. M., and D. E. Harrison, 2013: El Niño impacts on seasonal U.S. atmospheric circulation, temperature, and precipitation anomalies: The OLR-event perspective. J. Climate, 26, 822–837. doi: 10.1175/JCLI-D-12-00097.1
[4] Chiodi, A. M., and D. E. Harrison, 2015: Global seasonal precipitation anomalies robustly associated with El Niño and La Niña events—An OLR perspective. J. Climate, 28, 6133–6159. doi: 10.1175/JCLI-D-14-00387.1
[5] Clerbaux, N., S. Dewitte, L. Gonzalez, et al., 2003: Outgoing longwave flux estimation: improvement of angular modelling using spectral information. Remote Sens. Environ., 85, 389–395. doi: 10.1016/S0034-4257(03)00015-4
[6] Clerbaux, N., T. Akkermans, E. Baudrez, et al., 2020: The climate monitoring SAF outgoing longwave radiation from AVHRR. Remote Sens., 12, 929. doi: 10.3390/rs12060929
[7] Gruber, A., and A. F. Krueger, 1984: The status of the NOAA outgoing longwave radiation data set. Bull. Amer. Meteor. Soc., 65, 958–962. doi: 10.1175/1520-0477(1984)065<0958:TSOTNO>2.0.CO;2
[8] Hu, X. Q., 2012: Unified radiometric recalibration study on long-term historical data record of meteorological satellite sensors. Ph.D. dissertation, Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing, 262 pp. (in Chinese)
[9] Huang, M., J. D. Li, G. Zeng, et al., 2020: Regional characteristics of cloud radiative effects before and after the South China Sea summer monsoon onset. J. Meteor. Res., 34, 1167–1182. doi: 10.1007/s13351-020-0018-6
[10] Inoue, T., and S. A. Ackerman, 2002: Radiative effects of various cloud types as classified by the split window technique over the eastern sub-tropical Pacific derived from collocated ERBE and AVHRR data. J. Meteor. Soc. Japan, 80, 1383–1394. doi: 10.2151/jmsj.80.1383
[11] Kiladis, G. N., J. Dias, K. H. Straub, et al., 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 1697–1715. doi: 10.1175/MWR-D-13-00301.1
[12] Kim, B.-Y., and K.-T. Lee, 2019: Using the Himawari-8 AHI multi-channel to improve the calculation accuracy of outgoing longwave radiation at the top of the atmosphere. Remote Sens., 11, 589. doi: 10.3390/rs11050589
[13] Kim, B.-Y., K.-T. Lee, J.-B. Jee, et al., 2018: Retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI data. Remote Sens. Environ., 204, 498–508. doi: 10.1016/j.rse.2017.10.006
[14] Knapp, K. R., S. Ansari, C. L. Bain, et al., 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893–907. doi: 10.1175/2011BAMS3039.1
[15] Lee, H.-T., 2014: Climate Algorithm Theoretical Basis Document (C-ATBD): Outgoing Longwave Radiation (OLR)-Daily. NOAA’s Climate Data Record (CDR) Program, CDRP-ATBD-0526, 46 pp. Available online at https://www.ncei.noaa.gov/pub/data/sds/cdr/CDRs/Outgoing%20Longwave%20Radiation%20-%20Daily/AlgorithmDescription_01B-21.pdf. Accessed on 16 May 2022.
[16] Lee, H.-T., A. Gruber, R. G. Ellingson, et al., 2007: Development of the HIRS outgoing longwave radiation climate dataset. J. Atmos. Oceanic Technol., 24, 2029–2047. doi: 10.1175/2007JTECHA989.1
[17] Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.
[18] Liu, J., Y. Q. Da, T. Li, et al., 2020: Impact of ENSO on MJO pattern evolution over the Maritime Continent. J. Meteor. Res., 34, 1151–1166. doi: 10.1007/s13351-020-0046-2
[19] Liu, L., W. C. Zhang, W. Chen, et al., 2021: Evaluation of FY-3B reprocessed OLR data in the Asian–Australian monsoon region during 2011–2019: Comparison with NOAA OLR. J. Meteor. Res., 35, 964–974. doi: 10.1007/s13351-021-1086-y
[20] Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134, 439–453. doi: 10.1002/qj.224
[21] Nakazawa, T., 2006: Madden-Julian Oscillation activity and typhoon landfall on Japan in 2004. SOLA, 2, 136–139. doi: 10.2151/sola.2006-035
[22] Ohring, G., A. Gruber, and R. Ellingson, 1984: Satellite determinations of the relationship between total longwave radiation flux and infrared window radiance. J. Appl. Meteor. Climatol., 23, 416–425. doi: 10.1175/1520-0450(1984)023<0416:SDOTRB>2.0.CO;2
[23] Priestley, K. J., G. L. Smith, S. Thomas, et al., 2007: Validation protocol for climate quality CERES measurements. Proceedings of SPIE 6678, Infrared Spaceborne Remote Sensing and Instrumentation XV, SPIE, San Diego, USA, 66781I, doi: 10.1117/12.735312.
[24] Ren, S. L., Y. Li, X. Fang, et al., 2018: The South China Sea summer monsoon onset index using FY satellite derived data. J. Trop. Meteor., 34, 587–597. (in Chinese) doi: 10.16032/j.issn.1004-4965.2018.05.002
[25] Schmetz, J., and Q. H. Liu, 1988: Outgoing longwave radiation and its diurnal variation at regional scales derived from Meteosat. J. Geophys. Res. Atmos., 93, 11,192–11,204. doi: 10.1029/JD093iD09p11192
[26] Short, D. A., and R. F. Cahalan, 1983: Interannual variability and climatic noise in satellite-observed outgoing longwave radiation. Mon. Wea. Rev., 111, 572–577. doi: 10.1175/1520-0493(1983)111<0572:IVACNI>2.0.CO;2
[27] Singh, A., U. C. Mohanty, and G. Mishra, 2014: Long-lead prediction skill of Indian summer monsoon rainfall using outgoing longwave radiation (OLR): an application of canonical correlation analysis. Pure Appl. Geophys., 171, 1519–1530. doi: 10.1007/s00024-013-0689-3
[28] Stechmann, S. N., and H. R. Ogrosky, 2014: The Walker circulation, diabatic heating, and outgoing longwave radiation. Geophys. Res. Lett., 41, 9097–9105. doi: 10.1002/2014GL062257
[29] Stowe, L. L., H. Jacobowitz, G. Ohring, et al., 2002: The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Climate, 15, 1243–1260. doi: 10.1175/1520-0442(2002)015<1243:TAVHRR>2.0.CO;2
[30] Susskind, J., G. Molnar, L. Iredell, et al., 2012: Interannual variability of outgoing longwave radiation as observed by AIRS and CERES. J. Geophys. Res. Atmos., 117, D23107. doi: 10.1029/2012JD017997
[31] Taylor, P. C., 2012: Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles from CERES. J. Atmos. Sci., 69, 3652–3669. doi: 10.1175/JAS-D-12-088.1
[32] Wang, C. Z., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño–Southern Oscillation. J. Geophys. Res. Oceans, 104, 5131–5149. doi: 10.1029/1998JC900090
[33] Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941–961. doi: 10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2
[34] Whitburn, S., L. Clarisse, S. Bauduin, et al., 2020: Spectrally resolved fluxes from IASI data: Retrieval algorithm for clear-sky measurements. J. Climate, 33, 6971–6988. doi: 10.1175/JCLI-D-19-0523.1
[35] Wu, X., and J. J. Yan, 2011: Estimating the outgoing longwave radiation from the FY-3B satellite visible infrared radiometer Channel 5 radiance observations. Chinese Sci. Bull., 56, 3480–3485. doi: 10.1007/s11434-011-4686-6
[36] Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784–801. doi: 10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2
[37] Yang, J., C. H. Dong, N. M. Lu, et al., 2009: FY-3A: The new generation polar-orbiting meteorological satellite of China. Acta Meteor. Sinica, 67, 501–509. (in Chinese) doi: 10.11676/qxxb2009.050
[38] Yang, J., Z. Q. Zhang, C. Y. Wei, et al., 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 98, 1637–1658. doi: 10.1175/BAMS-D-16-0065.1
[39] Zhang, P., Q. F. Lu, X. Q. Hu, et al., 2019: Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv. Atmos. Sci., 36, 1027–1045. doi: 10.1007/s00376-019-8215-x