[1] Balsamo, G., C. Albergel, A. Beljaars, et al., 2015: ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389–407. doi: 10.5194/hess-19-389-2015
[2] Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP Mesoscale Eta model. Bound.-Layer Meteor., 185, 391–421. doi: 10.1023/A:1000531001463
[3] Chen, Y. Y., K. Yang, J. Qin, et al., 2013: Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos., 118, 4466–4475. doi: 10.1002/jgrd.50301
[4] Decharme, B., and H. Douville, 2006: Uncertainties in the GSWP-2 precipitation forcing and their impacts on regional and global hydrological simulations. Climate Dyn., 27, 695–713. doi: 10.1007/s00382-006-0160-6
[5] Decker, M., M. A. Brunke, Z. Wang, et al., 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 1916–1944. doi: 10.1175/JCLI-D-11-00004.1
[6] Dorigo, W., R. de Jeu, D. Chung, et al., 2012: Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett., 39, L18405. doi: 10.1029/2012GL052988
[7] Ek, M. B., K. E. Mitchell, Y. Lin, et al., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos., 108, 8851. doi: 10.1029/2002JD003296
[8] Fekete, B. M., C. J. Vörösmarty, J. O. Roads, et al., 2004: Uncertainties in precipitation and their impacts on runoff estimates. J. Climate, 17, 294–304. doi: 10.1175/1520-0442(2004)017<0294:UIPATI>2.0.CO;2
[9] Friedl, M. A., D. Sulla-Menashe, B. Tan, et al., 2010: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168–182. doi: 10.1016/j.rse.2009.08.016
[10] Gao, Y. H., L. Cuo, and Y. X. Zhang, 2014: Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms. J. Climate, 27, 1876–1893. doi: 10.1175/JCLI-D-13-00321.1
[11] Gottschalck, J., J. Meng, M. Rodell, et al., 2005: Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System land surface states. J. Hydrometeor., 6, 573–598. doi: 10.1175/JHM437.1
[12] Guo, Z. C., P. A. Dirmeyer, Z.-Z. Hu, et al., 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. J. Geophys. Res. Atmos., 111, D22S03. doi: 10.1029/2006JD007845
[13] Henry, C. M., D. M. Allen, and J. L. Huang, 2011: Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeol. J., 19, 741–755. doi: 10.1007/s10040-011-0724-3
[14] Janowiak, J. E., A. Gruber, C. R. Kondragunta, et al., 1998: A comparison of the NCEP–NCAR reanalysis precipitation and the GPCP rain gauge–satellite combined dataset with observational error considerations. J. Climate, 11, 2960–2979. doi: 10.1175/1520-0442(1998)011<2960:ACOTNN>2.0.CO;2
[15] Ji, L., G. B. Senay, and J. P. Verdin, 2015: Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products. J. Hydrometeor., 16, 2463–2480. doi: 10.1175/JHM-D-14-0230.1
[16] Jiménez, C., C. Prigent, B. Mueller, et al., 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. Atmos., 116, D02102. doi: 10.1029/2010JD014545
[17] Joaquin, M.-S., E. Dutra, G. Balsamo, et al., 2017: ERA5-Land: A new state-of-the-art global land surface reanalysis dataset. Proc. 31st Conference on Hydrology, 25 January, Amer. Meteor. Soc., Seattle, US, 1–16.
[18] Kim, S., R. M. Parinussa, Y. Y. Liu, et al., 2015: A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation. Geophys. Res. Lett., 42, 6662–6670. doi: 10.1002/2015GL064981
[19] Koren, V., J. Schaake, K. Mitchell, et al., 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res. Atmos., 104, 19,569–19,585. doi: 10.1029/1999JD900232
[20] Li, Y. H., C. L. Zhao, T. J. Zhang, et al., 2018: Impacts of land-use data on the simulation of surface air temperature in North-west China. J. Meteor. Res., 32, 896–908. doi: 10.1007/s13351-018-7151-5
[21] Liu, D., G. L. Wang, R. Mei, et al., 2014: Diagnosing the strength of land–atmosphere coupling at subseasonal to seasonal time scales in Asia. J. Hydrometeor., 15, 320–339. doi: 10.1175/JHM-D-13-0104.1
[22] Liu, Y. Y., W. A. Dorigo, R. M. Parinussa, et al., 2012: Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ., 123, 280–297. doi: 10.1016/j.rse.2012.03.014
[23] Liu, Z. Q., C. X. Shi, Z. J. Zhou, et al., 2017: CMA global reanalysis (CRA-40): Status and plans. Proc. 5th International Conference on Reanalysis, 13–17 November, Natl. Meteor. Int. Center, Rome, Italy, 1–16.
[24] Long, D., B. R. Scanlon, L. Longuevergne, et al., 2013: GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys. Res. Lett., 40, 3395–3401. doi: 10.1002/grl.50655
[25] Materia, S., P. A. Dirmeyer, Z. C. Guo, et al., 2010: The sensitivity of simulated river discharge to land surface representation and meteorological forcings. J. Hydrometeor., 11, 334–351. doi: 10.1175/2009JHM1162.1
[26] Maurer, E. P., G. M. O’Donnell, D. P. Lettenmaier, et al., 2001: Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic mo-del. J. Geophys. Res. Atmos., 106, 17841–17862. doi: 10.1029/2000JD900828
[27] Meng, J., R. Q. Yang, H. L. Wei, et al., 2012: The land surface analysis in the NCEP Climate Forecast System Reanalysis. J. Hydrometeor., 13, 1621–1630. doi: 10.1175/JHM-D-11-090.1
[28] Proulx, R. A., M. D. Knudson, A. Kirilenko, et al., 2013: Significance of surface water in the terrestrial water budget: A case study in the Prairie Coteau using GRACE, GLDAS, Landsat, and groundwater well data. Water Resour. Res., 49, 5756–5764. doi: 10.1002/wrcr.20455
[29] Reichle, R. H., R. D. Koster, G. J. M. De Lannoy, et al., 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 6322–6338. doi: 10.1175/JCLI-D-10-05033.1
[30] Ren, Z. H., Z. F. Zhang, C. Sun, et al., 2015: Development of three-step quality control system of real-time observation data from AWS in China. Meteor. Mon., 41, 1268–1277. (in Chinese) doi: 10.7519/j.issn.1000-0526.2015.10.010
[31] Rodell, M., P. R. Houser, U. Jambor, et al., 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394. doi: 10.1175/BAMS-85-3-381
[32] Rodell, M., J. L. Chen, H. Kato, et al., 2007: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J., 15, 159–166. doi: 10.1007/s10040-006-0103-7
[33] Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111. doi: 10.1175/JCLI3790.1
[34] Sun, S., C. X. Shi, X. Liang, et al., 2017: Assessment of ground temperature simulation in China by different land surface models based on station observations. J. Appl. Meteor. Sci., 28, 737–749. (in Chinese) doi: 10.11898/1001-7313.20170609
[35] Wang, A. H., and X. B. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos., 117, D05102. doi: 10.1029/2011JD016553
[36] Xia, Y. L., Z. C. Hao, C. X. Shi, et al., 2019: Regional and global land data assimilation systems: Innovations, challenges, and prospects. J. Meteor. Res., 33, 159–189. doi: 10.1007/s13351-019-8172-4
[37] Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
[38] Xie, P. P., A. Yatagai, M. Chen, et al., 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607–626. doi: 10.1175/JHM583.1
[39] Xue, B.-L., L. Wang, X. P. Li, et al., 2013: Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol., 492, 290–297. doi: 10.1016/j.jhydrol.2013.04.005
[40] Zaitchik, B. F., M. Rodell, and F. Olivera, 2010: Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resour. Res., 46, W06507. doi: 10.1029/2009WR007811
[41] Zhang, J. Y., W.-C. Wang, and J. F. Wei, 2008: Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res. Atmos., 113, D17119. doi: 10.1029/2008JD009807
[42] Zhang, L., H. Q. Lyu, and L. Y. Wang, 2017: Analysis and calibration of singular historical observed data of manual soil water. Meteor. Mon., 43, 189–196. (in Chinese) doi: 10.7519/j.issn.1000-0526.2017.02.006
[43] Zhao, B., B. Zhang, C. X. Shi, et al., 2019: Comparison of the global energy cycle between Chinese Reanalysis Interim and ECMWF Reanalysis. J. Meteor. Res., 33, 563–575. doi: 10.1007/s13351-019-8129-7
[44] Zhou, C. L., K. C. Wang, and Q. Ma, 2017: Evaluation of eight current reanalyses in simulating land surface temperature from 1979 to 2003 in China. J. Climate, 30, 7379–7398. doi: 10.1175/JCLI-D-16-0903.1