[1] Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112, C11007. doi: 10.1029/2006JC003798
[2] Bjerknes, J., 1969: Atmospheric teleconnections from the equato-rial Pacific. Mon. Wea. Rev., 97, 163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
[3] Feng, J., and J. P. Li, 2011: Influence of El Niño Modoki on spring rainfall over South China. J. Geophys. Res. Atmos., 116, D13102. doi: 10.1029/2010JD015160
[4] Feng, J., L. Wang, W. Chen, et al., 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res. Atmos., 115, D24122. doi: 10.1029/2010JD014761
[5] Feng, J., W. Chen, C. Y. Tam, et al., 2011: Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int. J. Climatol., 31, 2091–2101. doi: 10.1002/Joc.2217
[6] Fu, Z. B., and J. Fletcher, 1985: Two patterns of equatorial warming associated with El Niño. Chinese Sci. Bull., 30, 1360–1364.
[7] Guo, Y. J., P. M. Zhai, and Y. Q. Ni, 1998: A new index for ENSO monitoring. Quart. J. Appl. Meteor., 9, 169–177. (in Chinese)
[8] Hanley, D. E., M. A. Bourassa, J. J. O’Brien, et al., 2003: A quantitative evaluation of ENSO indices. J. Climate, 16, 1249–1258. doi: 10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2
[9] Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813–829. doi: 10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2
[10] Huang, B. Y., P. W. Thorne, V. F. Banzon, et al., 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205. doi: 10.1175/JCLI-D-16-0836.1
[11] Huang, R. H., R. H. Zhang, and Q. Y. Zhang, 2000: The 1997/98 ENSO cycle and its impact on summer climate anomalies in East Asia. Adv. Atmos. Sci., 17, 348–362. doi: 10.1007/s00376-000-0028-3
[12] Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632. doi: 10.1175/2008JCLI2309.1
[13] Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515. doi: 10.1175/2008JCLI2624.1
[14] Li, X. Y., and P. M. Zhai, 2000: On indices and indicators of ENSO episodes. Acta Meteor. Sinica, 58, 102–109. (in Chinese) doi: 10.11676/qxxb2000.010
[15] Li, X. Y., P. M. Zhai, and F. M. Ren, 2005: Redefining ENSO episodes based on changed climate references. J. Trop. Meteor., 21, 97–103. (in Chinese)
[16] Liu, Y., and H.-L. Ren, 2017: Improving ENSO prediction in CFSv2 with an analogue-based correction method. Int. J. Cli-matol., 37, 5035–5046. doi: 10.1002/joc.5142
[17] McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropi-cal Pacific Ocean. Geophys. Res. Lett., 38, L15709. doi: 10.1029/2011GL048275
[18] Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropi-cal sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384. doi: 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
[19] Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407. doi: 10.1029/2002JD002670
[20] Ren, H.-L., and F. F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704. doi: 10.1029/2010GL046031
[21] Ren, H.-L., and F. F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506–6523. doi: 10.1175/JCLI-D-12-00601.1
[22] Ren, H.-L., F. F. Jin, M. F. Stuecker, et al., 2013: ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteor. Soc. Japan, 91, 835–842. doi: 10.2151/jmsj.2013-608
[23] Ren, H.-L., F. F. Jin, B. Tian, et al., 2016a: Distinct persistence barriers in two types of ENSO. Geophys. Res. Lett., 43, 10,973–10,979. doi: 10.1002/2016GL071015
[24] Ren, H.-L., Y. Liu, J. Q. Zuo, et al., 2016b: The new generation of ENSO prediction system in Beijing Climate Center and its prediction for the 2014/16 super El Niño event. Meteor. Mon., 42, 521–531. (in Chinese) doi: 10.7519/j.issn.1000-0526.2016.05.001
[25] Ren, H.-L., C. H. Sun, F. M. Ren, et al., 2017a: GB/T 33666-2017 Identification method for El Niño/La Niña events. Standards Press of China, Beijing, 1–6. (in Chinese)
[26] Ren, H.-L., F. F. Jin, L. C. Song, et al., 2017b: Prediction of primary climate variability modes at the Beijing Climate Center. J. Meteor. Res., 31, 204–223. doi: 10.1007/s13351-017-6097-3
[27] Ren, H.-L., A. A. Scaife, N. Dunstone, et al., 2018a: Seasonal predictability of winter ENSO types in operational dynamical model predictions. Climate Dyn., . doi: 10.1007/s00382-018-4366-1
[28] Ren, H.-L., J. Q. Zuo, and Y. Deng, 2018b: Statistical predictability of Niño indices for two types of ENSO. Climate Dyn., . doi: 10.1007/s00382-018-4453-3
[29] Reynolds, R. W., N. A. Rayner, T. M. Smith, et al., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625. doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
[30] Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 2864–2889. doi: 10.1002/2013JD020316
[31] Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 2771–2778. doi: 10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
[32] Trenberth, K. E., and D. P. Stepaniak, 2001: LETTERS: Indices of El Niño evolution. J. Climate, 14, 1697–1701. doi: 10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2
[33] Trenberth, K. E., G. W. Branstator, D. Karoly, et al., 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Oceans, 103, 14291–14324. doi: 10.1029/97JC01444
[34] Wang, Q., S. L. Li, J. J. Fu, et al., 2012: On the formation of anomalous summer precipitation in the years of 2010 and 1998: A comparison of the El Niño’s impact between Modoki and typical El Niño cases. Acta Meteor. Sinica, 70, 1207–1222. (in Chinese) doi: 10.11676/qxxb2012.102
[35] Wang, S. P., 1991: The criteria, classification and characteristics of El Niño episodes. Acta Oceanol. Sinica, 13, 611–620. (in Chinese)
[36] Weng, H. Y., K. Ashok, S. K. Behera, et al., 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129. doi: 10.1007/s00382-007-0234-0
[37] Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 7702–7722. doi: 10.1175/JCLI-D-11-00576.1
[38] Yuan, Y., and H. M. Yan, 2013: Different types of La Niña events and different responses of the tropical atmosphere. Chinese Sci. Bull., 58, 406–415.
[39] Yuan, Y., H. Yang, and C. Y. Li, 2012: Study of El Niño events of different types and their potential impact on the following summer precipitation in China. Acta Meteor. Sinica, 70, 467–478. (in Chinese) doi: 10.11676/qxxb2012.039
[40] Zhang, W. J., F. F. Jin, J. P. Li, et al., 2011: Contrasting impacts of two types of El Niño over the western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89, 563–569. doi: 10.2151/jmsj.2011-510
[41] Zhang, W. J., F. F. Jin, H.-L. Ren, et al., 2012: Differences in teleconnection over North Pacific and the rainfall shift over the USA associated with two types of El Niño during boreal autumn. J. Meteor. Soc. Japan, 90, 535–552. doi: 10.2151/jmsj.2012-407
[42] Zhang, W. J., L. Wang, B. Q. Xiang, et al., 2015: Impacts of two types of La Niña on the NAO during boreal winter. Climate Dyn., 44, 1351–1366. doi: 10.1007/s00382-014-2155-z
[43] Zhang, W. J., F. F. Jin, M. F. Stuecker, et al., 2016: Unraveling El Niño’s impact on the East Asian Monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11,375–11,382. doi: 10.1002/2016GL071190