[1] Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006. doi: 10.1175/JCLI3457.1
[2] Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143–152. doi: 10.1007/s00703-005-0126-y
[3] Chen, L. S., and Y. H. Ding, 1979: Overview of the Typhoons in Northwest Pacific. Science Press, Beijing, 491 pp. (in Chinese)
[4] Chen, L. S., Y. H. Duan, L. L. Song, et al., 2012: Typhoon Forecast and Disaster. China Meteorological Press, Beijing, 370 pp. (in Chinese)
[5] China Meteorological Administration (CMA), 1950–1991: Typhoons Yearbook (1949–1990). China Meteorological Press, Beijing. (in Chinese)
[6] China Meteorological Administration (CMA), 1992–2017: Yearbook of Tropical Cyclone (1991–2016). China Meteorological Press, Beijing. (in Chinese)
[7] Choi, Y., K.-J. Ha, C.-H. Ho, et al., 2015: Interdecadal change in typhoon genesis condition over the western North Pacific. Climate Dyn., 45, 3243–3255. doi: 10.1007/s00382-015-2536-y
[8] Dong, M. Y., L. S. Chen, Y. Li, et al., 2013: Numerical study of cold air impact on rainfall reinforcement associated with tropical cyclone Talim (2005): I. Impact of different cold air intensity. J. Trop. Meteor., 19, 87–96. doi: 10.16555/j.1006-8775.2013.01.009
[9] Emanuel, K., 2018: 100 years of progress in tropical cyclone research. Meteor. Monogr., 59, 15.1–15.68. doi: 10.1175/AMSMONOGRAPHS-D-18-0016.1
[10] Fan, T. T., S. B. Xu, F. Huang, et al., 2019: The phase differences of the interdecadal variabilities of tropical cyclone activity in the peak and late seasons over the western North Pacific. Theor. Appl. Climatol., 136, 77–83. doi: 10.1007/s00704-018-2465-x
[11] Gao, S. Z., L. Dong, Y. L. Xu, et al., 2018: Analysis of the characteristics and forecast difficulties of typhoons in western North Pacific in 2016. Meteor. Mon., 44, 284–293. (in Chinese) doi: 10.7519/j.issn.1000-0526.2018.02.008
[12] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of China, 2006: Grade of Tropical Cyclones: GB/T 19201–2006. China Standard Press, Beijing, 1–3. (in Chinese)
[13] Goh, A. Z.-C., and J. C. L. Chan, 2010: Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. Int. J. Climatol., 30, 827–843. doi: 10.1002/joc.1943
[14] Ho, C.-H., J.-J. Baik, J.-H. Kim, et al., 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 1767–1776. doi: 10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2
[15] Hsu, P.-C., P.-S. Chu, H. Murakami, et al., 2014: An abrupt decrease in the late-season typhoon activity over the western North Pacific. J. Climate, 27, 4296–4312. doi: 10.1175/JCLI-D-13-00417.1
[16] Hsu, P.-C., T.-H. Lee, C.-H. Tsou, et al., 2017: Role of scale interactions in the abrupt change of tropical cyclone in autumn over the western North Pacific. Climate Dyn., 49, 3175–3192. doi: 10.1007/s00382-016-3504-x
[17] Li, R. C. Y., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 2904–2918. doi: 10.1175/JCLI-D-12-00210.1
[18] Li, R. C. Y., and W. Zhou, 2014: Interdecadal change in South China Sea tropical cyclone frequency in association with zonal sea surface temperature gradient. J. Climate, 27, 5468–5480. doi: 10.1175/JCLI-D-13-00744.1
[19] Li, R. C. Y., and W. Zhou, 2018: Revisiting the intraseasonal, interannual and interdecadal variability of tropical cyclones in the western North Pacific. Atmos. Ocean. Sci. Lett., 11, 198–208. doi: 10.1080/16742834.2018.1459460
[20] Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J. Meteor. Soc. Japan, 72, 401–412. doi: 10.2151/jmsj1965.72.3_401
[21] Lin, I.-I., and J. C. L. Chan, 2015: Recent decrease in typhoon destructive potential and global warming implications. Nat. Commun., 6, 7182. doi: 10.1038/ncomms8182
[22] Liu, K. S., and J. C. L. Chan, 2013: Inactive period of western North Pacific tropical cyclone activity in 1998–2011. J. Climate, 26, 2614–2630. doi: 10.1175/JCLI-D-12-00053.1
[23] Lu, X. Q., H. Yu, X. M. Yang, et al., 2017: Estimating tropical cyclone size in the northwestern Pacific from geostationary satellite infrared images. Remote Sens., 9, 728. doi: 10.3390/rs9070728
[24] Maue, R. N., 2011: Recent historically low global tropical cyclone activity. Geophys. Res. Lett., 38, L14803. doi: 10.1029/2011GL047711
[25] Mei, W., S.-P. Xie, M. Zhao, et al., 2015: Forced and internal variability of tropical cyclone track density in the western North Pacific. J. Climate, 28, 143–167. doi: 10.1175/JCLI-D-14-00164.1
[26] Ren, F. M., G. X. Wu, X. L. Wang, et al., 2011a: Tropical Cyclones Affecting China over the Last 60 Years. China Meteorological Press, Beijing, 75–129. (in Chinese)
[27] Ren, F. M., J. Liang, G. X. Wu, et al., 2011b: Reliability analysis of climate change of tropical cyclone activity over the western North Pacific. J. Climate, 24, 5887–5898. doi: 10.1175/2011JCLI3996.1
[28] Takahashi, H. G., Y. Fukutomi, and J. Matsumoto, 2011: The impact of long-lasting northerly surges of the East Asian winter monsoon on tropical cyclogenesis and its seasonal march. J. Meteor. Soc. Japan, 89A, 181–200. doi: 10.2151/jmsj.2011-A12
[29] Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658. doi: 10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
[30] Wang, L., R. H. Huang, and R. G. Wu, 2013: Interdecadal variability in tropical cyclone frequency over the South China Sea and its association with the Indian Ocean sea surface temperature. Geophys. Res. Lett., 40, 768–771. doi: 10.1002/grl.50171
[31] Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257–278. doi: 10.1007/s00703-003-0055-6
[32] Wang, Y. P., Y. J. Huang, and X. P. Cui, 2018: Impact of mid- and upper-level dry air on tropical cyclone genesis and intensification: A modeling study of Durian (2001). Adv. Atmos. Sci., 35, 1505–1521. doi: 10.1007/s00376-018-8039-0
[33] Wu, L. G., B. Wang, and S. Q. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703. doi: 10.1029/2005GL022937
[34] Ying, M., W. Zhang, H. Yu, et al., 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287–301. doi: 10.1175/JTECH-D-12-00119.1
[35] Yu, Y. B., 2012: Research advances of cold air impacts on the tropical cyclone genesis and development. Acta Oceanol. Sinica, 34, 173–178. (in Chinese)
[36] Yu, Y. B., and X. P. Yao, 2007: A statistical analysis on intensity change of tropical cyclones over the western North Pacific. J. Trop. Meteor., 13, 14–16.
[37] Zhao, H. K., and C. Z. Wang, 2016: Interdecadal modulation on the relationship between ENSO and typhoon activity during the late season in the western North Pacific. Climate Dyn., 47, 315–328. doi: 10.1007/s00382-015-2837-1
[38] Zhao, H. K., P.-S. Chu, P.-C. Hsu, et al., 2014: Exploratory analysis of extremely low tropical cyclone activity during the late-season of 2010 and 1998 over the western North Pacific and the South China Sea. J. Adv. Model. Earth Syst., 6, 1141–1153. doi: 10.1002/2014MS000381
[39] Zhu, S. Z., and X. F. Meng, 2015: Differences between the Northwest Pacific tropical cyclone genesis location of two kinds of El Niño Modoki in autumn. Mar. Environ. Sci., 34, 255–260. (in Chinese) doi: 10.13634/j.cnki.mes.2015.02.017