[1] Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396–409. doi: 10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
[2] Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 1748–1765. doi: 10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2
[3] Chen, C. H., X. Li, H. R. He, et al., 2018: Algorithm based on local breeding of growing modes for convection-allowing ensemble forecasting. Sci. China Earth Sci., 61, 462–472. doi: 10.1007/s11430-017-9167-5
[4] Chen, C. H., Y. Wang, J. Du, et al., 2020: Overview of the European operational ensemble prediction systems. Adv. Meteor. Sci. Technol., 10, 19–29. (in Chinese) doi: 10.3969/j.issn.2095-1973.2020.02.004
[5] Cheung, K. K. W., 2001: Ensemble forecasting of tropical cyclone motion: comparison between regional bred modes and random perturbations. Meteor. Atmos. Phys., 78, 23–34. doi: 10.1007/s007030170003
[6] Clark, A. J., W. A. Gallus, Jr., M. Xue, et al., 2010: Growth of spread in convection-allowing and convection-parameterizing ensembles. Wea. Forecasting, 25, 594–612. doi: 10.1175/2009WAF2222318.1
[7] Denis, B., J. Côté, and R. Laprise, 2002: Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rev., 130, 1812–1829. doi: 10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2
[8] Done, J. M., G. C. Craig, S. L. Gray, et al., 2012: Case-to-case variability of predictability of deep convection in a mesoscale model. Quart. J. Roy. Meteor. Soc., 138, 638–648. doi: 10.1002/qj.943
[9] Du, J., and M. S. Tracton, 2001: Implementation of a real-time short range ensemble forecasting system at NCEP: An update. Proc. Ninth Conference on Mesoscale Processes, American Meteorological Society, Florida, P4.9.
[10] Gao, F., J. Z. Min, and F. Y. Kong, 2010: Experiment of the storm-scale ensemble forecast based on breeding of growing modes. Plateau Meteor., 29, 429–436. (in Chinese)
[11] Johnson, A., and X. G. Wang, 2016: A study of multiscale initial condition perturbation methods for convection-permitting ensemble forecasts. Mon. Wea. Rev., 144, 2579–2604. doi: 10.1175/MWR-D-16-0056.1
[12] Johnson, A., X. G. Wang, M. Xue, et al., 2011: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Ensemble clustering over the whole experiment period. Mon. Wea. Rev., 139, 3694–3710. doi: 10.1175/MWR-D-11-00016.1
[13] Kain, J. S., S. J. Weiss, J. J. Levit, et al., 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167–181. doi: 10.1175/WAF906.1
[14] Li, X., H. R. He, C. H. Chen, et al., 2017: A convection-allowing ensemble forecast based on the breeding growth mode and associated optimization of precipitation forecast. J. Meteor. Res., 31, 955–964. doi: 10.1007/s13351-017-6695-0
[15] Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[16] Ma, S. J., C. H. Chen, H. R. He, et al., 2018a: Experiment and verification of the convective-scale ensemble forecast based on BGM. Plateau Meteor., 37, 495–504. (in Chinese) doi: 10.7522/j.issn.1000-0534.2017.00073
[17] Ma, S. J., C. H. Chen, H. R. He, et al., 2018b: Assessing the skill of convection-allowing ensemble forecasts of precipitation by optimization of spatial-temporal neighborhoods. Atmosphere, 9, 43. doi: 10.3390/atmos9020043
[18] Ma, S. J., C. H. Chen, H. R. He, et al., 2019: An analysis on perturbation features of convection-allowing ensemble prediction based on the local breeding growth mode. Wea. Forecasting, 34, 289–304. doi: 10.1175/WAF-D-18-0111.1
[19] Molteni, F., R. Buizza, T. N. Palmer, et al., 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73–119. doi: 10.1002/qj.49712252905
[20] Raynaud, L., and F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale. Quart. J. Roy. Meteor. Soc., 142, 854–866. doi: 10.1002/qj.2686
[21] Schwartz, C. S., J. S. Kain, S. J. Weiss, et al., 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263–280. doi: 10.1175/2009WAF2222267.1
[22] Schwartz, C. S., G. S. Romine, M. L. Weisman, et al., 2015: A real-time convection-allowing ensemble prediction system initialized by mesoscale ensemble Kalman filter analyses. Wea. Forecasting, 30, 1158–1181. doi: 10.1175/WAF-D-15-0013.1
[23] Schwartz, C. S., M. Wong, G. S. Romine, et al., 2020: Initial conditions for convection-allowing ensembles over the conterminous United States. Mon. Wea. Rev., 148, 2645–2669. doi: 10.1175/MWR-D-19-0401.1
[24] Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 3019–3032. doi: 10.1175/MWR2830.1
[25] Snook, N., M. Xue, and Y. Jung, 2012: Ensemble probabilistic forecasts of a tornadic mesoscale convective system from ensemble Kalman filter analyses using WSR-88D and CASA radar data. Mon. Wea. Rev., 140, 2126–2146. doi: 10.1175/MWR-D-11-00117.1
[26] Stensrud, D. J., M. Xue, L. J. Wicker, et al., 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 1487–1499. doi: 10.1175/2009BAMS2795.1
[27] Theis, S. E., A. Hense, and U. Damrath, 2005: Probabilistic precipitation forecasts from a deterministic model: a pragmatic approach. Meteor. Appl., 12, 257–268. doi: 10.1017/S1350482705001763
[28] Torn, R. D., and G. J. Hakim, 2008: Performance characteristics of a pseudo-operational ensemble Kalman filter. Mon. Wea. Rev., 136, 3947–3963. doi: 10.1175/2008MWR2443.1
[29] Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330. doi: 10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
[30] Toth, Z., and E. Kalnay, 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 3297–3319. doi: 10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2
[31] Wang, J. Z., J. Chen, Z. R. Zhuang, et al., 2018: Characteristics of initial perturbation growth rate in the regional ensemble prediction system of GRAPES. Chinese J. Atmos. Sci., 42, 367–382. (in Chinese) doi: 10.3878/j.issn.1006-9895.1708.17141
[32] Wang, Y., M. Bellus, J.-F. Geleyn, et al., 2014: A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending. Mon. Wea. Rev., 142, 2043–2059. doi: 10.1175/MWR-D-12-00354.1
[33] Yu, Y. F., and L. F. Zhang, 2007: The effect of different breeding length upon ensemble forecasting based on BGM. J. Appl. Meteor. Sci., 18, 86–93. (in Chinese) doi: 10.3969/j.issn.1001-7313.2007.01.012
[34] Yu, Y. F., L. F. Zhang, and Y. Luo, 2007: The breeding of growing modes with dynamic rescaling in ensemble prediction and improvement on free breeding. Chinese J. Atmos. Sci., 31, 527–535. (in Chinese)
[35] Zhang, F. Q., A. M. Odins, and J. W. Nielsen-Gammon, 2006: Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21, 149–166. doi: 10.1175/WAF909.1
[36] Zhang, H. B., X. F. Zhi, J. Chen, et al., 2017: Achievement of perturbation methods for regional ensemble forecast. Trans. Atmos. Sci., 40, 145–157. (in Chinese) doi: 10.13878/j.cnki.dqkxxb.20160405001
[37] Zhang, L. F., and Y. F. Yu, 2007: The effect of superposition manners of the bred modes on the initial perturbations in ensemble forecasting. Plateau Meteor., 26, 75–82. (in Chinese) doi: 10.3321/j.issn:1000-0534.2007.01.009
[38] Zheng, Y. J., Z. Y. Jin, and D. H. Chen, 2008: Kinetic energy spectrum analysis in a semi-implicit semi-Lagrangian dynamical framework. Acta Meteor. Sinica, 66, 143–157. (in Chinese) doi: 10.3321/j.issn:0577-6619.2008.02.002