Typhoon Vortex Self-Organization in a Baroclinic Environment

PDF

  • Self-organization of typhoon vortex in a baroclinic environment is studied based on eight numerical experiments with the fifth-generation Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model (MM5). The results show that, when there are only two 400-km-away mesoscale axisymmetric vortices with a radius of 500 km in the initial field, the two vortices move away from each other during co-rotating till the distance between them greater than a critical distance named co-rotating critical distance. Then, they stop co-rotating. The situation is changed when a small vortex with a radius of 80 km is introduced in between the two vortices in the initial field, with the two initially separated vortices approaching each other during their co-rotation, and finally self-organizing into a typhoon-like vortex consisting of an inner core and spiral bands. This result supports both Zhou Xiuji's view in 1994 and the studies in the barotropic framework concerning the interactions between the same and different scales of vortices. Six other experiments are carried out to study the effects of the initial vortex parameters, including the initial position of the small-scale vortex, the distance and intensity of the initially axisymmetric binary mesoscale vortices. It is found that the distance between the initial axisymmetric mesoscale vortices is the most important parameter that influences the self-organizing process of the final typhoon-like vortex. This conclusion is similar to that obtained from barotropical model experiments.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return