Biggerstaff, M. I., Z. Zounes, A. A. Alford, et al., 2017: Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system. Geophys. Res. Lett., 44, 8027–8036, https://doi.org/10.1002/2017GL074610.
|
Cao, D. J., F. Lu, X. H. Zhang, et al., 2021: Lightning activity observed by the FengYun-4A Lightning Mapping Imager. Remote Sens., 13, 3013, https://doi.org/10.3390/rs13153013.
|
Chen, Z. F., Y. Zhang, D. Zheng, et al., 2019: A method of three-dimensional location for LFEDA combining the time of arrival method and the time reversal technique. J. Geophys. Res. Atmos., 124, 6484–6500, https://doi.org/10.1029/2019JD030401.
|
Chen, Z. F., Y. Zhang, Y. F. Fan, et al., 2022: Close observation of the evolution process during initial stage of triggered lightning based on continuous interferometer. Remote Sens., 14, 863, https://doi.org/10.3390/rs14040863.
|
Chen, Z. X., X. S. Qie, Y. Tian, et al., 2017: Assimilation of lightning data through comprehensively nudging water contents at the cloud-resolving scale. Acta Meteor. Sinica, 75, 442–459, https://doi.org/10.11676/qxxb2017.035. (in Chinese)
|
Chen, Z. X., X. S. Qie, D. X. Liu, et al., 2019: Lightning data assimilation with comprehensively nudging water contents at cloud-resolving scale using WRF model. Atmos. Res., 221, 72–87, https://doi.org/10.1016/j.atmosres.2019.02.001.
|
|
Chen, Z. X., J. Z. Sun, X. S. Qie, et al., 2020b: A method to update model kinematic states by assimilating satellite-observed total lightning data to improve convective analysis and forecasting. J. Geophys. Res. Atmos., 125, e2020JD033330, https://doi.org/10.1029/2020JD033330.
|
Chen, Z. X., X. S. Qie, J. Z. Sun, et al., 2021: Evaluation of Fengyun-4A Lightning Mapping Imager (LMI) performance during multiple convective episodes over Beijing. Remote Sens., 13, 1746, https://doi.org/10.3390/rs13091746.
|
|
Fan, X., Y. Zhang, P. Krehbiel, et al., 2024: Channel development and electric parameter characteristics of regular pulse bursts in lightning. Geophys. Res. Lett., 51, e2023GL106582, https://doi.org/10.1029/2023GL106582.
|
Fan, X. P., Y. J. Zhang, P. R. Krehbiel, et al., 2021: Application of ensemble empirical mode decomposition in low-frequency lightning electric field signal analysis and lightning location. IEEE Trans. Geosci. Remote Sens., 59, 86–100, https://doi.org/10.1109/TGRS.2020.2991724.
|
Fan, X. P., P. R. Krehbiel, M. A. Stanley, et al., 2023: An improved method for analyzing broadband VHF interferometer lightning observations. IEEE Trans. Geosci. Remote Sens., 61, 2003218, https://doi.org/10.1109/TGRS.2023.3299368.
|
Fan, Y. F., G. P. Lu, R. B. Jiang, et al., 2018: Characteristics of electromagnetic signals during the initial stage of negative rocket-triggered lightning. J. Geophys. Res. Atmos., 123, 11,625–11,636, https://doi.org/10.1029/2018JD028744.
|
Fan, Y. F., Y. Zhang, G. P. Lu, et al., 2022: First measurements of low-medium frequency magnetic radiation for an altitude-triggered lightning flash. Geophys. Res. Lett., 49, e2022GL098867, https://doi.org/10.1029/2022GL098867.
|
Fierro, A. O., E. R. Mansell, D. R. MacGorman, et al., 2013: The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW model: Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon. Wea. Rev., 141, 2390–2415, https://doi.org/10.1175/MWR-D-12-00278.1.
|
Gao, Y., M. L. Chen, Z. L. Qin, et al., 2020: The spatial evolution of upward positive stepped leaders initiated from a 356-m-tall tower in southern China. J. Geophys. Res. Atmos., 125, e2019JD031508, https://doi.org/10.1029/2019JD031508.
|
Geng, Y.-A., Q. Y. Li, T. Y. Lin, et al., 2021: A deep learning framework for lightning forecasting with multi-source spatiotemporal data. Quart. J. Roy. Meteor. Soc., 147, 4048–4062, https://doi.org/10.1002/qj.4167.
|
Guo, F. X., Y. Li, Z. C. Huang, et al., 2017: Numerical simulation of 23 June 2016 Yancheng City EF4 tornadic supercell and analysis of lightning activity. Sci. China Earth Sci., 60, 2204–2213, https://doi.org/10.1007/s11430-017-9109-8.
|
Han, S. Y., D. Zheng, Y. J. Zhang, et al., 2020: Characteristic analysis of cloud-to-ground lightning activity during hailstorm process with three hail falling events. Acta Meteor. Sinica, 78, 101–115, https://doi.org/10.11676/qxxb2020.012. (in Chinese)
|
Huang, S. Y., X. Q. Jing, J. Yang, et al., 2024: Modeling the impact of secondary ice production on the charge structure of a mesoscale convective system. J. Geophys. Res. Atmos., 129, e2023JD039303, https://doi.org/10.1029/2023JD039303.
|
Hui, W., F. X. Huang, and R. X. Liu, 2020: Characteristics of lightning signals over the Tibetan Plateau and the capability of FY-4A LMI lightning detection in the Plateau. Int. J. Remote Sens., 41, 4605–4625, https://doi.org/10.1080/01431161.2020.1723176.
|
Jiang, M. J., J. Q. Feng, Z. Q. Li, et al., 2017: Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast. Atmos. Chem. Phys., 17, 13,967–13,982, https://doi.org/10.5194/acp-17-13967-2017.
|
Jiang, R. B., X. S. Qie, C. X. Wang, et al., 2013: Propagating features of upward positive leaders in the initial stage of rocket-triggered lightning. Atmos. Res., 129–130, 90–96, https://doi.org/10.1016/j.atmosres.2012.09.005.
|
Jiang, R. B., Z. J. Wu, X. S. Qie, et al., 2014: High-speed video evidence of a dart leader with bidirectional development. Geophys. Res. Lett., 41, 5246–5250, https://doi.org/10.1002/2014GL060585.
|
Jiang, R. B., X. S. Qie, Z. C. Wang, et al., 2015: Characteristics of lightning leader propagation and ground attachment. J. Geophys. Res. Atmos., 120, 11,988–12,002, https://doi.org/10.1002/2015JD023519.
|
Jiang, R. B., X. S. Qie, Z. X. Li, et al., 2020: Luminous crown residual vs. bright space segment: Characteristical structures for the intermittent positive and negative leaders of triggered lightning. Geophys. Res. Lett., 47, e2020GL088107, https://doi.org/10.1029/2020GL088107.
|
Jiang, R. B., A. Srivastava, X. S. Qie, et al., 2021: Fine structure of the breakthrough phase of the attachment process in a natural lightning flash. Geophys. Res. Lett., 48, e2020GL091608, https://doi.org/10.1029/2020GL091608.
|
Jiang, R. B., S. F. Yuan, X. S. Qie, et al., 2022: Activation of abundant recoil leaders and their promotion effect on the negative-end breakdown in an intracloud lightning flash. Geophys. Res. Lett., 49, e2021GL096846, https://doi.org/10.1029/2021GL096846.
|
Jiang, R. J., W. T. Lyu, B. Wu, et al., 2021: First documented downward positive cloud-to-ground lightning initiated by an upward negative lightning. J. Geophys. Res. Atmos., 126, e2021JD034566, https://doi.org/10.1029/2021JD034566.
|
Kong, X. Z., Y. Zhao, Z. F. Qiu, et al., 2021: A simple method for predicting intensity change using the peak time lag between lightning and wind in tropical cyclones. Geophys. Res. Lett., 48, e2020GL088872, https://doi.org/10.1029/2020GL088872.
|
Kostinskiy, A. Y., V. S. Syssoev, N. A. Bogatov, et al., 2018: Abrupt elongation (stepping) of negative and positive leaders culminating in an intense corona streamer burst: Observations in long sparks and implications for lightning. J. Geophys. Res. Atmos., 123, 5360–5375, https://doi.org/10.1029/2017JD027997.
|
Li, F. Q., Z. L. Sun, R. B. Jiang, et al., 2021a: A rocket-triggered lightning flash containing negative-positive-negative current polarity reversal during its initial stage. J. Geophys. Res. Atmos., 126, e2020JD033187, https://doi.org/10.1029/2020JD033187.
|
Li, F. Q., Z. L. Sun, M. Y. Liu, et al., 2021b: A new hybrid algorithm to image lightning channels combining the time difference of arrival technique and electromagnetic time reversal technique. Remote Sens., 13, 4658, https://doi.org/10.3390/rs13224658.
|
Li, J., B. Z. Dai, J. H. Zhou, et al., 2022: Preliminary application of long-range lightning location network with equivalent propagation velocity in China. Remote Sens., 14, 560, https://doi.org/10.3390/rs14030560.
|
Li, Y. J., G. S. Zhang, Y. H. Wang, et al., 2017: Observation and analysis of electrical structure change and diversity in thunderstorms on the Qinghai-Tibet Plateau. Atmos. Res., 194, 130–141, https://doi.org/10.1016/j.atmosres.2017.04.031.
|
Li, Y. J., G. S. Zhang, and Y. J. Zhang, 2020: Evolution of the charge structure and lightning discharge characteristics of a Qinghai-Tibet Plateau thunderstorm dominated by negative cloud-to-ground flashes. J. Geophys. Res. Atmos., 125, e2019JD031129, https://doi.org/10.1029/2019JD031129.
|
Li, Y. R., Y. Zhang, Y. J. Zhang, et al., 2021: A new method for connecting the radiation sources of lightning discharge extension channels. Earth Space Sci., 8, e2021EA001713, https://doi.org/10.1029/2021EA001713.
|
Li, Y. R., Y. Zhang, Y. J. Zhang, et al., 2022: Analysis of the configuration relationship between the morphological characteristics of lightning channels and the charge structure based on the localization of VHF radiation sources. Geophys. Res. Lett., 49, e2022GL099586, https://doi.org/10.1029/2022GL099586.
|
Li, Y. R., Y. Zhang, Y. J. Zhang, et al., 2024: Analysis of the relationship between the morphological characteristics of lightning channels and turbulent dynamics based on the localization of VHF radiation sources. Geophys. Res. Lett., 51, e2023GL106024, https://doi.org/10.1029/2023GL106024.
|
Li, Z., T. L. Zhang, D. Zheng, et al., 2024a: Study of dynamics-microphysical-lightning activity characteristics in a tropical hailstorm. J. Atmos. Sol. Terr. Phys., 259, 106241, https://doi.org/10.1016/j.jastp.2024.106241.
|
Li, Z., T. L. Zhang, D. Zheng, et al., 2024b: The characteristics of lightning activity-dynamics-microphysical in a tropical hailstorm. Chinese J. Geophys., 67, 3311–3326, https://doi.org/10.6038/cjg2023R0766. (in Chinese)
|
|
Lin, T. Y., Q. Y. Li, Y.-A. Geng, et al., 2019: Attention-based dual-source spatiotemporal neural network for lightning forecast. IEEE Access, 7, 158,296–158,307, https://doi.org/10.1109/ACCESS.2019.2950328.
|
Lin, X. T., Z. Shi, Y. B. Tan, et al., 2021: A numerical study of aerosol impacts on thunderstorm electrification under different water vapor conditions. Acta Meteor. Sinica, 79, 458–476, https://doi.org/10.11676/qxxb2021.030. (in Chinese)
|
Liu, B., L.-H. Shi, S. Qiu, et al., 2020: Three-dimensional lightning positioning in low-frequency band using time reversal in frequency domain. IEEE Trans. Electromagn. Compat., 62, 774–784, https://doi.org/10.1109/TEMC.2019.2920302.
|
Liu, D. X., X. S. Qie, Y. C. Chen, et al., 2020: Investigating lightning characteristics through a supercell storm by comprehensive coordinated observations over North China. Adv. Atmos. Sci., 37, 861–872, https://doi.org/10.1007/s00376-020-9264-x.
|
Liu, D. X., M. Y. Sun, D. B. Su, et al., 2021: A five-year climatological lightning characteristics of linear mesoscale convective systems over North China. Atmos. Res., 256, 105580, https://doi.org/10.1016/j.atmosres.2021.105580.
|
Liu, D. X., F. Q. Li, X. S. Qie, et al., 2024a: Charge structure and lightning discharge in a thunderstorm over the central Tibetan Plateau. Geophys. Res. Lett., 51, e2024GL109602, https://doi.org/10.1029/2024GL109602.
|
Liu, D. X., H. Yu, Z. L. Sun, et al., 2024b: Convective properties and lightning activity in different categories of thunderstorms over the Beijing area during five warm seasons. Remote Sens., 16, 447, https://doi.org/10.3390/rs16030447.
|
Liu, F. F., G. P. Lu, T. Neubert, et al., 2021: Optical emissions associated with narrow bipolar events from thunderstorm clouds penetrating into the stratosphere. Nat. Commun., 12, 6631, https://doi.org/10.1038/s41467-021-26914-4.
|
Liu, H. Y., W. S. Dong, L. T. Xu, et al., 2016: 3D spatial-temporal characteristics of initial breakdown process in lightning observed by broadband interferometer. J. Appl. Meteor. Sci., 27, 16–24, https://doi.org/10.11898/1001-7313.20160102. (in Chinese)
|
Liu, H. Y., D. H. Wang, W. S. Dong, et al., 2023: A time delay calibration technique for improving broadband lightning interferometer locating. Remote Sens., 15, 2817, https://doi.org/10.3390/rs15112817.
|
Liu, M. Y., X. S. Qie, Z. L. Sun, et al., 2024: Upgraded low-frequency 3D lightning mapping system in North China and observations on lightning initiation processes. Remote Sens., 16, 1608, https://doi.org/10.3390/rs16091608.
|
|
|
|
|
Lu, J. Y., X. S. Qie, R. B. Jiang, et al., 2021: Lightning activity during convective cell mergers in a squall line and corresponding dynamical and thermodynamical characteristics. Atmos. Res., 256, 105555, https://doi.org/10.1016/j.atmosres.2021.105555.
|
Lu, J. Y., X. S. Qie, X. Xiao, et al., 2022: Effects of convective mergers on the evolution of microphysical and electrical activity in a severe squall line simulated by WRF coupled with explicit electrification scheme. J. Geophys. Res. Atmos., 127, e2021JD036398, https://doi.org/10.1029/2021JD036398.
|
Lu, W. T., L. W. Chen, Y. Ma, et al., 2013: Lightning attachment process involving connection of the downward negative leader to the lateral surface of the upward connecting leader. Geophys. Res. Lett., 40, 5531–5535, https://doi.org/10.1002/2013GL058060.
|
Lu, W. T., Y. Gao, L. W. Chen, et al., 2015: Three-dimensional propagation characteristics of the leaders in the attachment process of a downward negative lightning flash. J. Atmos. Sol. Terr. Phys., 136, 23–30, https://doi.org/10.1016/j.jastp.2015.07.011.
|
|
|
Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171–194, https://doi.org/10.1175/2009JAS2965.1.
|
Meng, Q., W. Yao, and L. T. Xu, 2019: Development of lightning nowcasting and warning technique and its application. Adv. Meteor., 2019, 2405936, https://doi.org/10.1155/2019/2405936.
|
Pan, L. X., X. S. Qie, and D. F. Wang, 2014: Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean. Adv. Atmos. Sci., 31, 581–592, https://doi.org/10.1007/s00376-013-3115-y.
|
Pan, S. J., and J. D. Gao, 2022: A method for assimilating pseudo dewpoint temperature as a function of GLM flash extent density in GSI-based EnKF data assimilation system—A proof of concept study. Earth Space Sci., 9, e2022EA002378, https://doi.org/10.1029/2022EA002378.
|
Pan, Y., D. Zheng, Y. J. Zhang, et al., 2023: Significant location accuracy changes resulting from lightning detection networks deployed on inclined terrains. Remote Sens., 15, 5733, https://doi.org/10.3390/rs15245733.
|
Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos., 97, 9919–9933, https://doi.org/10.1029/92JD00719.
|
Pu, Y. J., X. S. Qie, R. B. Jiang, et al., 2019: Broadband characteristics of chaotic pulse trains associated with sequential dart leaders in a rocket-triggered lightning flash. J. Geophys. Res. Atmos., 124, 4074–4085, https://doi.org/10.1029/2018JD029488.
|
Qi, Q., W. Lyu, Y. Ma, et al., 2019: High-speed video observations of natural lightning attachment process with framing rates up to half a million frames per second. Geophys. Res. Lett., 46, 12,580–12,587, https://doi.org/10.1029/2019GL085072.
|
Qi, Q., W. Lyu, D. Wang, et al., 2021: Two-dimensional striking distance of lightning flashes to a cluster of tall buildings in Guangzhou. J. Geophys. Res. Atmos., 126, e2021JD034613, https://doi.org/10.1029/2021JD034613.
|
Qi, Q., B. Wu, W. Lyu, et al., 2023: The attachment process of negative connecting leader to the lateral surface of downward positive leader in a positive cloud-to-ground lightning flash. Geophys. Res. Lett., 50, e2023GL104887, https://doi.org/10.1029/2023GL104887.
|
Qie, X. S., and X. Z. Kong, 2007: Progression features of a stepped leader process with four grounded leader branches. Geophys. Res. Lett., 34, L06809, https://doi.org/10.1029/2006GL028771.
|
|
Qie, X. S., T. L. Zhang, C. P. Chen, et al., 2005: The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau. Geophys. Res. Lett., 32, L05814, https://doi.org/10.1029/2004GL022162.
|
Qie, X. S., Q. L. Zhang, T. Yuan, et al., 2013: Lightning Physics. Science Press, Beijing, 467 pp. (in Chinese)
|
Qie, X. S., X. K. Wu, T. Yuan, et al., 2014a: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 6612–6626, https://doi.org/10.1175/JCLI-D-14-00076.1.
|
Qie, X. S., R. P. Zhu, T. Yuan, et al., 2014b: Application of total-lightning data assimilation in a mesoscale convective system based on the WRF model. Atmos. Res., 145–146, 255–266, https://doi.org/10.1016/j.atmosres.2014.04.012.
|
|
|
Qie, X. S., Y. J. Pu, R. B. Jiang, et al., 2017: Bidirectional leader development in a preexisting channel as observed in rocket-triggered lightning flashes. J. Geophys. Res. Atmos., 122, 586–599, https://doi.org/10.1002/2016JD025224.
|
Qie, X. S., S. F. Yuan, Z. X. Chen, et al., 2021: Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region. Sci. China Earth Sci., 64, 10–26, https://doi.org/10.1007/s11430-020-9656-8.
|
Qie, X. S., K. Qie, L. Wei, et al., 2022a: Significantly increased lightning activity over the Tibetan Plateau and its relation to thunderstorm genesis. Geophys. Res. Lett., 49, e2022GL099894, https://doi.org/10.1029/2022GL099894.
|
|
Qie, X. S., Y. J. Zhang, D. L. Zhang, et al., 2023: Principles and Forecasting of Thunderstorm Weather Systems. Science Press, Beijing, 297 pp. (in Chinese)
|
|
|
Saunders, C. P. R., and S. L. Peck, 1998: Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J. Geophys. Res. Atmos., 103, 13,949–13,956, https://doi.org/10.1029/98JD00533.
|
Shi, D. D., D. Zheng, Y. Zhang, et al., 2017: Low-frequency E-field Detection Array (LFEDA)—Construction and preliminary results. Sci. China Earth Sci., 60, 1896–1908, https://doi.org/10.1007/s11430-016-9093-9.
|
|
Srivastava, A., Y. Tian, X. S. Qie, et al., 2017: Performance assessment of Beijing lightning network (BLNET) and comparison with other lightning location networks across Beijing. Atmos. Res., 197, 76–83, https://doi.org/10.1016/j.atmosres.2017.06.026.
|
Srivastava, A., R. B. Jiang, S. F. Yuan, et al., 2019: Intermittent propagation of upward positive leader connecting a downward negative leader in a negative cloud-to-ground lightning. J. Geophys. Res. Atmos., 124, 13,763–13,776, https://doi.org/10.1029/2019JD031148.
|
|
Sun, L., X. S. Qie, E. R. Mansell, et al., 2018: Feedback effect of electric field force on electrification and charge structure in thunderstorm. Acta Phys. Sinica, 67, 169–201, https://doi.org/10.7498/aps.67.20180505. (in Chinese)
|
Sun, L., Z. X. Chen, Y. Xu, et al., 2019: Evolution of lightning radiation sources of a strong squall line over Beijing metropolitan region and its relation to convection region and surface thermodynamic condition. Chinese J. Atmos. Sci., 43, 759–772, https://doi.org/10.3878/j.issn.1006-9895.1805.18128. (in Chinese)
|
Sun, M. Y., D. X. Liu, X. S. Qie, et al., 2021: Aerosol effects on electrification and lightning discharges in a multicell thunderstorm simulated by the WRF-ELEC model. Atmos. Chem. Phys., 21, 14,141–14,158, https://doi.org/10.5194/acp-21-14141-2021.
|
Sun, M. Y., X. S. Qie, E. R. Mansell, et al., 2023: Aerosol impacts on storm electrification and lightning discharges under different thermodynamic environments. J. Geophys. Res. Atmos., 128, e2022JD037450, https://doi.org/10.1029/2022JD037450.
|
Sun, M. Y., Z. Q. Li, T. Wang, et al., 2024: Understanding the effects of aerosols on electrification and lightning polarity in an idealized supercell thunderstorm via model emulation. J. Geophys. Res. Atmos., 129, e2023JD039251, https://doi.org/10.1029/2023JD039251.
|
Sun, Z. L., X. S. Qie, R. B. Jiang, et al., 2014: Characteristics of a rocket-triggered lightning flash with large stroke number and the associated leader propagation. J. Geophys. Res. Atmos., 119, 13,388–13,399, https://doi.org/10.1002/2014JD022100.
|
Sun, Z. L., X. S. Qie, M. Y. Liu, et al., 2016: Characteristics of a negative lightning with multiple-ground terminations observed by a VHF lightning location system. J. Geophys. Res. Atmos., 121, 413–426, https://doi.org/10.1002/2015JD023702.
|
Sun, Z. L., X. S. Qie, M. Y. Liu, et al., 2022: Three-dimensional mapping on lightning discharge processes using two VHF broadband interferometers. Remote Sens., 14, 6378, https://doi.org/10.3390/rs14246378.
|
Takahashi, T., 1978: Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 35, 1536–1548, https://doi.org/10.1175/1520-0469(1978)035<1536:REAaCG>2.0.CO;2. doi: 10.1175/1520-0469(1978)035<1536:REAaCG>2.0.CO;2
|
Tan, Y. B., S. C. Tao, Z. W. Liang, et al., 2014: Numerical study on relationship between lightning types and distribution of space charge and electric potential. J. Geophys. Res. Atmos., 119, 1003–1014, https://doi.org/10.1002/2013JD019983.
|
Tan, Y. B., C. Y. Xiang, X. Ma, et al., 2017: A numerical study on the effect of ice nucleation on thundercloud lightning behavior. Acta Meteor. Sinica, 75, 328–341, https://doi.org/10.11676/qxxb2017.015. (in Chinese)
|
|
|
Visacro, S., M. Guimaraes, and M. H. Murta Vale, 2017: Features of upward positive leaders initiated from towers in natural cloud-to-ground lightning based on simultaneous high-speed videos, measured currents, and electric fields. J. Geophys. Res. Atmos., 122, 12,786–12,800, https://doi.org/10.1002/2017JD027016.
|
Wang, D. F., X. S. Qie, T. Yuan, et al., 2009: An analysis on the initial stage of intracloud lightning with the location technique of fast electric field change pulses. Acta Meteor. Sinica, 67, 165–174, https://doi.org/10.11676/qxxb2009.017. (in Chinese)
|
Wang, D. F., Z. L. Sun, S. F. Yuan, et al., 2020: Beijing broadband lightning NETwork and the spatiotemporal evolution of lightning flashes during a thunderstorm. Chinese J. Atmos. Sci., 44, 851–864, https://doi.org/10.3878/j.issn.1006-9895.1910.19161. (in Chinese)
|
Wang, F., Y. J. Zhang, D. Zheng, et al., 2015a: Impact of the vertical velocity field on charging processes and charge separation in a simulated thunderstorm. J. Meteor. Res., 29, 328–343, https://doi.org/10.1007/s13351-015-4023-0.
|
Wang, F., Y. J. Zhang, and D. Zheng, 2015b: Impact of updraft on neutralized charge rate by lightning in thunderstorms: A simulation case study. J. Meteor. Res., 29, 997–1010, https://doi.org/10.1007/s13351-015-5023-9.
|
Wang, F., Y. J. Zhang, H. Y. Liu, et al., 2016: Characteristics of cloud-to-ground lightning strikes in the stratiform regions of mesoscale convective systems. Atmos. Res., 178–179, 207–216, doi: 10.1016/j.atmosres.2016.03.021.
|
Wang, F., X. S. Qie, and X. D. Cui, 2017: Climatological characteristics of lightning activity within tropical cyclones and its relationship to cyclone intensity change over the Northwest Pacific. Chinese J. Atmos. Sci., 41, 1167–1176, https://doi.org/10.3878/j.issn.1006-9895.1704.17102. (in Chinese)
|
Wang, F., X. S. Qie, D. F. Wang, et al., 2018: Lightning activity in tropical cyclones and its relationship to dynamic and thermodynamic parameters over the northwest Pacific. Atmos. Res., 213, 86–96, https://doi.org/10.1016/j.atmosres.2018.05.027.
|
Wang, F., X. H. Deng, Y. J. Zhang, et al., 2019a: Numerical simulation of the formation of a large lower positive charge center in a Tibetan Plateau thunderstorm. J. Geophys. Res. Atmos., 124, 9561–9593, https://doi.org/10.1029/2018JD029676.
|
Wang, F., H. Y. Liu, W. S. Dong, et al., 2019b: Radar reflectivity of lightning flashes in stratiform regions of mesoscale convective systems. J. Geophys. Res. Atmos., 124, 14,114–14,132, https://doi.org/10.1029/2019JD031238.
|
Wang, F., Y. J. Zhang, H. Y. Liu, et al., 2020: Vertical reflectivity structures near lightning flashes in the stratiform regions of mesoscale convective systems. Atmos. Res., 242, 104961, https://doi.org/10.1016/j.atmosres.2020.104961.
|
Wang, F., Y. J. Zhang, W. S. Dong, et al., 2021: Characteristics of negative leader propagation area of lightning flashes initiated in the stratiform regions of mesoscale convective systems. J. Geophys. Res. Atmos., 126, e2020JD033336, https://doi.org/10.1029/2020JD033336.
|
Wang, H. L., Y. B. Liu, W. Y. Y. Cheng, et al., 2017: Improving lightning and precipitation prediction of severe convection using lightning data assimilation with NCAR WRF-RTFDDA. J. Geophys. Res. Atmos., 122, 12,296–12,316, https://doi.org/10.1002/2017JD027340.
|
|
|
|
Wang, Y. H., Y. C. Min, Y. L. Liu, et al., 2021: A new approach of 3D lightning location based on Pearson correlation combined with empirical mode decomposition. Remote Sens., 13, 3883, https://doi.org/10.3390/rs13193883.
|
Wang, Z. C., X. S. Qie, R. B. Jiang, et al., 2016: High-speed video observation of stepwise propagation of a natural upward positive leader. J. Geophys. Res. Atmos., 121, 14307–14315, https://doi.org/10.1002/2016JD025605.
|
Wang, Z. Y., G. P. Lu, X. Li, et al., 2023: Low frequency magnetic field observations of natural positive leaders featuring stepwise propagation. Geophys. Res. Lett., 50, e2023GL105540, https://doi.org/10.1029/2023GL105540.
|
Wu, B., W. T. Lyu, Q. Qi, et al., 2019: High-speed video observations of recoil leaders producing and not producing return strokes in a Canton-Tower upward flash. Geophys. Res. Lett., 46, 8546–8553, https://doi.org/10.1029/2019GL083862.
|
Wu, B., W. T. Lyu, Q. Qi, et al., 2022: High-speed video observations of needles in a positive cloud-to-ground lightning flash. Geophys. Res. Lett., 49, e2021GL096546, https://doi.org/10.1029/2021GL096546.
|
Wu, B., Q. Qi, W. T. Lyu, et al., 2023: High-speed video observations of needles evolving into negative leaders in a positive cloud-to-ground lightning flash. J. Geophys. Res. Atmos., 128, e2023JD039523, https://doi.org/10.1029/2023JD039523.
|
Wu, C., L. P. Liu, and Z. Q. Zhang, 2014: Quantitative comparison algorithm between the S-band phased array radar and the CINRAD/SA and its preliminary application. Acta Meteor. Sinica, 72, 390–401, https://doi.org/10.11676/qxxb2014.021. (in Chinese)
|
Wu, C., L. P. Liu, M. Wei, et al., 2018: Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci., 35, 296–316, https://doi.org/10.1007/s00376-017-6241-0.
|
Wu, F., X. P. Cui, D.-L. Zhang, et al., 2017: The relationship of lightning activity and short-duration rainfall events during warm seasons over the Beijing metropolitan region. Atmos. Res., 195, 31–43, https://doi.org/10.1016/j.atmosres.2017.04.032.
|
Wu, X. K., X. S. Qie, T. Yuan, et al., 2016: Meteorological regimes of the most intense convective systems along the southern Himalayan front. J. Climate, 29, 4383–4398, https://doi.org/10.1175/JCLI-D-14-00835.1.
|
Xiao, X., X. S. Qie, Z. X. Chen, et al., 2021a: Evaluating the performance of lightning data assimilation from BLNET observations in a 4DVAR-based weather nowcasting model for a high-impact weather over Beijing. Remote Sens., 13, 2084, https://doi.org/10.3390/rs13112084.
|
Xiao, X., J. Z. Sun, X. S. Qie, et al., 2021b: Lightning data assimilation scheme in a 4DVAR system and its impact on very short-term convective forecasting. Mon. Wea. Rev., 149, 353–373, https://doi.org/10.1175/MWR-D-19-0396.1.
|
Xu, C., N. Huret, S. Celestin, et al., 2023a: Detailed modeling and evaluation of the potential impact of blue jet on the atmospheric chemistry. J. Geophys. Res. Atmos., 128, e2023JD038668, https://doi.org/10.1029/2023JD038668.
|
Xu, C., X. S. Qie, Z. L. Sun, et al., 2023b: Transient luminous events and their relationship to lightning strokes over the Tibetan Plateau and its comparison regions. J. Geophys. Res. Atmos., 128, e2022JD037292, https://doi.org/10.1029/2022JD037292.
|
Xu, L. T., Y. J. Zhang, H. Y. Liu, et al., 2016: The role of dynamic transport in the formation of the inverted charge structure in a simulated hailstorm. Sci. China Earth Sci., 59, 1414–1426, https://doi.org/10.1007/s11430-016-5293-9.
|
Xu, L. T., Y. J. Zhang, F. Wang, et al., 2019: Simulation of inverted charge structure formation in convective regions of mesoscale convective system. J. Meteor. Soc. Japan, 97, 1119–1135, https://doi.org/10.2151/jmsj.2019-062.
|
Xu, L. T., L. L. Xue, and I. Geresdi, 2020: How does the melting impact charge separation in squall line? A bin microphysics simulation study. Geophys. Res. Lett., 47, e2020GL090840, https://doi.org/10.1029/2020GL090840.
|
Xu, L. T., S. Chen, and W. Yao, 2022: Evaluation of lightning prediction by an electrification and discharge model in long-term forecasting experiments. Adv. Meteor., 2022, 4583030, https://doi.org/10.1155/2022/4583030.
|
|
|
Xu, W. X., S. A. Rutledge, and W. J. Zhang, 2017: Relationships between total lightning, deep convection, and tropical cyclone intensity change. J. Geophys. Res. Atmos., 122, 7047–7063, https://doi.org/10.1002/2017JD027072.
|
Xu, Y., Z. L. Sun, J. J. Zhou, et al., 2018: Lightning activity of a severe squall line with cell merging process and its relationships with dynamic fields. Chinese J. Atmos. Sci., 42, 1393–1406, https://doi.org/10.3878/j.issn.1006-9895.1801.17220. (in Chinese)
|
|
Yang, J., X. S. Qie, L. H. Zhong, et al., 2020: Analysis of a gigantic jet in southern China: Morphology, meteorology, storm evolution, lightning, and narrow bipolar events. J. Geophys. Res. Atmos., 125, e2019JD031538, https://doi.org/10.1029/2019JD031538.
|
Yang, Y., Y. Wang, and K. F. Zhu, 2015: Assimilation of Chinese Doppler radar and lightning data using WRF-GSI: A case study of mesoscale convective system. Adv. Meteor., 2015, 763919, https://doi.org/10.1155/2015/763919.
|
Yi, X. Y., X. L. Sun, Y. J. Zhang, et al., 2017: Evolution of radar parameters and lightning activity during thunderstorm cells merging. Acta Meteor. Sinica, 75, 981–995, https://doi.org/10.11676/qxxb2017.073. (in Chinese)
|
|
Yu, H., T. L. Zhang, Y. Chen, et al., 2021: Vertical electrical field during decay stage of local thunderstorm near coastline in tropical island. Acta Phys. Sinica, 70, 109201, https://doi.org/10.7498/aps.70.20201634. (in Chinese)
|
|
Yuan, S. F., R. B. Jiang, X. S. Qie, et al., 2017: Characteristics of upward lightning on the Beijing 325 m meteorology tower and corresponding thunderstorm conditions. J. Geophys. Res. Atmos., 122, 12,093–12,105, https://doi.org/10.1002/2017JD027198.
|
Yuan, S. F., R. B. Jiang, X. S. Qie, et al., 2019: Development of side bidirectional leader and its effect on channel branching of the progressing positive leader of lightning. Geophys. Res. Lett., 46, 1746–1753, https://doi.org/10.1029/2018GL080718.
|
Yuan, S. F., X. S. Qie, R. B. Jiang, et al., 2020: Origin of an uncommon multiple-stroke positive cloud-to-ground lightning flash with different terminations. J. Geophys. Res. Atmos., 125, e2019JD032098, https://doi.org/10.1029/2019JD032098.
|
Yuan, S. F., R. B. Jiang, X. S. Qie, et al., 2021a: Side discharges from the active negative leaders in a positive cloud-to-ground lightning flash. Geophys. Res. Lett., 48, e2021GL094127, https://doi.org/10.1029/2021GL094127.
|
Yuan, S. F., X. S. Qie, R. B. Jiang, et al., 2021b: In-cloud discharge of positive cloud-to-ground lightning and its influence on the initiation of tower-initiated upward lightning. J. Geophys. Res. Atmos., 126, e2021JD035600, https://doi.org/10.1029/2021JD035600.
|
Yuan, S. F., X. S. Qie, R. B. Jiang, et al., 2023: Lightning VHF radiation mapping method for an irregular short-baseline array. Earth Space Sci., 10, e2022EA002752, https://doi.org/10.1029/2022EA002752.
|
Zhang, G. S., Y. H. Wang, X. S. Qie, et al., 2010: Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes. Sci. China Earth Sci., 53, 591–602, https://doi.org/10.1007/s11430-009-0116-x.
|
Zhang, H. B., X. S. Qie, M. Y. Liu, et al., 2021a: The charge structure in a thunderstorm based on three-dimensional electric field sonde. Chinese J. Geophys., 64, 1155–1166, https://doi.org/10.6038/cjg2021O0187. (in Chinese)
|
Zhang, H. B., X. S. Qie, M. Y. Liu, et al., 2021b: Study on the charge structure in the stratiform region of a mesoscale convective system based on in-situ electric field observation. Plateau Meteor., 40, 1531–1541, https://doi.org/10.7522/j.issn.1000-0534.2021.zk004. (in Chinese)
|
Zhang, T. L., H. Yu, Y. Chen, et al., 2021: Sounding observation of vertical electric field in eyewall of Typhoon Wipha (No. 1907) during landing period. Acta Phys. Sinica, 70, 139201, https://doi.org/10.7498/aps.70.20202183. (in Chinese)
|
Zhang, W. J., Y. J. Zhang, D. Zheng, et al., 2015: Relationship between lightning activity and tropical cyclone intensity over the northwest Pacific. J. Geophys. Res. Atmos., 120, 4072–4089, https://doi.org/10.1002/2014JD022334.
|
|
Zhang, W. J., W. Hui, W. T. Lyu, et al., 2020: FY-4A LMI observed lightning activity in Super Typhoon Mangkhut (2018) in comparison with WWLLN data. J. Meteor. Res., 34, 336–352, https://doi.org/10.1007/s13351-020-9500-4.
|
Zhang, Y. J., Y. Zhang, M. J. Zou, et al., 2022: Advances in lightning monitoring and location technology research in China. Remote Sens., 14, 1293, https://doi.org/10.3390/rs14051293.
|
Zhang, Y. K., T. X. Zheng, Y. B. Tan, et al., 2024: Establishment of a parameterization of lightning channel state changes and numerical simulation of lightning cut-off and re-breakdown. Acta Meteor. Sinica, 82, 222–235, https://doi.org/10.11676/qxxb2024.20230079. (in Chinese)
|
|
|
Zhao, C. H., D. Zheng, Y. J. Zhang, et al., 2021a: Characteristics of cloud microphysics at positions with flash initiations and channels in convection and stratiform areas of two squall lines. J. Trop. Meteor., 37, 358–369, https://doi.org/10.16032/j.issn.1004-4965.2021.035. (in Chinese)
|
Zhao, C. H., D. Zheng, Y. J. Zhang, et al., 2021b: Turbulence characteristics of thunderstorms before the first flash in comparison to non-thunderstorms. Geophys. Res. Lett., 48, e2021GL094821, https://doi.org/10.1029/2021GL094821.
|
Zhao, C. H., Y. J. Zhang, D. Zheng, et al., 2022: Using polarimetric radar observations to characterize first echoes of thunderstorms and nonthunderstorms: A comparative study. J. Geophys. Res. Atmos., 127, e2022JD036671, https://doi.org/10.1029/2022JD036671.
|
|
|
Zhao, Z. K., X. S. Qie, T. L. Zhang, et al., 2010: Electric field soundings and the charge structure within an isolated thunderstorm. Chinese Sci. Bull., 55, 872–876, https://doi.org/10.1007/s11434-009-0471-1.
|
|
Zheng, D., and Y. J. Zhang, 2021: New insights into the correlation between lightning flash rate and size in thunderstorms. Geophys. Res. Lett., 48, e2021GL096085, https://doi.org/10.1029/2021GL096085.
|
Zheng, D., Y. J. Zhang, and Q. Meng, 2018: Properties of negative initial leaders and lightning flash size in a cluster of supercells. J. Geophys. Res. Atmos., 123, 12,857–12,876, https://doi.org/10.1029/2018JD028824.
|
Zheng, D., D. D. Shi, Y. Zhang, et al., 2019a: Initial leader properties during the preliminary breakdown processes of lightning flashes and their associations with initiation positions. J. Geophys. Res. Atmos., 124, 8025–8042, https://doi.org/10.1029/2019JD030300.
|
Zheng, D., D. H. Wang, Y. J. Zhang, et al., 2019b: Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms. J. Geophys. Res. Atmos., 124, 7179–7206,, https://doi.org/10.1029/2018JD030060.
|
Zheng, T. X., Y. B. Tan, H. C. Wang, et al., 2022: A self-sustained charge neutrality intracloud lightning parameterization containing channel decay and reactivation. Geophys. Res. Lett., 49, e2022GL100849, https://doi.org/10.1029/2022GL100849.
|
Zhou, K. H., Y. G. Zheng, and T. B. Wang, 2021: Very short-range lightning forecasting with NWP and observation data: A deep learning approach. Acta Meteor. Sinica, 79, 1–14, https://doi.org/10.11676/qxxb2021.002. (in Chinese)
|
Zhou, X. Y., Y.-A. Geng, H. M. Yu, et al., 2022: LightNet+: A dual-source lightning forecasting network with bi-direction spatiotemporal transformation. Appl. Intell., 52, 11,147–11,159, https://doi.org/10.1007/s10489-021-03089-5.
|
Zhu, J. W., S. F. Yuan, X. S. Qie, et al., 2024: Initiation of downward positive leader beneath the negative leader channel. Geophys. Res. Lett., 51, e2024GL109961, https://doi.org/10.1029/2024GL109961.
|
Zou, M. J., Y. Zhang, Y. F. Fan, et al., 2024: Performance evaluation of LMI based on low-frequency three-dimensional total lightning flash location data. Remote Sens., 16, 244, https://doi.org/10.3390/rs16020244.
|