Ades, M., and P. J. van Leeuwen, 2015: The equivalent-weights particle filter in a high–dimensional system. Quart. J. Roy. Meteor. Soc., 141, 484–503, https://doi.org/10.1002/qj.2370.
|
Agustí-Panareda, A., A. Beljaars, C. Cardinali, et al., 2010: Impacts of assimilating AMMA soundings on ECMWF analyses and forecasts. Wea. Forecasting, 25, 1142–1160, https://doi.org/10.1175/2010WAF2222370.1.
|
Aires, F., C. Prigent, F. Bernardo, et al., 2011: A tool to estimate Land-Surface emissivities at microwave frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690–699, https://doi.org/10.1002/qj.803.
|
|
|
|
|
|
|
Anderson, J. L., 2023: A quantile-conserving ensemble filter framework. Part II: Regression of observation increments in a probit and probability integral transformed space. Mon. Wea. Rev., 151, 2759–2777, https://doi.org/10.1175/MWR-D-23-0065.1.
|
Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2. doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2
|
Andersson, E., J. Pailleux, J. N. Thépaut, et al., 1994: Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Quart. J. Roy. Meteor. Soc., 120, 627–653, https://doi.org/10.1002/qj.49712051707.
|
|
Atkins, M. J., and M. Jones, 1975: An experiment to deter mine the value of satellite infrared spectrometer (SIRS) data in numerical forecasting. Meteor. Mag., 104, 125–142.
|
|
Bao, X. H., R. D. Xia, Y. L. Luo, et al., 2023: Efficiently improving ensemble forecasts of warm-sector heavy rainfall over coastal southern China: Targeted assimilation to reduce the critical initial field errors. J. Meteor. Res., 37, 486–507, https://doi.org/10.1007/s13351-023-2140-8.
|
Baordo, F., and A. J. Geer, 2016: Assimilation of SSMIS humidity-sounding channels in all-sky conditions over land using a dynamic emissivity retrieval. Quart. J. Roy. Meteor. Soc., 142, 2854–2866, https://doi.org/10.1002/qj.2873.
|
Barkmeijer, J., F. Bouttier, and M. Van Gijzen, 1998: Singular vectors and estimates of the analysis-error covariance metric. Quart. J. Roy. Meteor. Soc., 124, 1695–1713, https://doi.org/10.1002/qj.49712454916.
|
Bauer, P., A. J. Geer, P. Lopez, et al., 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136, 1868–1885, https://doi.org/10.1002/qj.659.
|
Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. Atmos., 108, 8775, https://doi.org/10.1029/2002JD002900.
|
Bennett, A. F., 1992: Inverse Methods in Physical Oceanography. Cambridge University Press, Cambridge, 368 pp, https://doi.org/10.1017/CBO9780511600807.
|
Bennett, A. F., B. S. Chua, and L. M. Leslie, 1996: Generalized inversion of a global numerical weather prediction model. Meteor. Atmos. Phys., 60, 165–178, https://doi.org/10.1007/BF01029793.
|
|
|
Berner, J., G. J. Shutts, M. Leutbecher, et al., 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603–626, https://doi.org/10.1175/2008JAS2677.1.
|
Bi, X. Y., Z. Q. Gao, Y. G. Liu, et al., 2015: Observed drag coefficients in high winds in the near offshore of the South China Sea. J. Geophys. Res. Atmos., 120, 6444–6459, https://doi.org/10.1002/2015JD023172.
|
|
Bishop, C. H., and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 1748–1765, https://doi.org/10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2. doi: 10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2
|
Bishop, C. H., and D. Hodyss, 2009: Ensemble covariances adaptively localized with ECO-RAP. Part I: Tests on simple error models. Tellus A, 61, 84–96.
|
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2. doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
|
Bloom, S. C., L. L. Takacs, A. M. da Silva, et al., 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 1256–1271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2. doi: 10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2
|
Bocquet, M., A. Farchi, and Q. Malartic, 2021: Online learning of both state and dynamics using ensemble Kalman filters. Found. Data Sci., 3, 305–330, https://doi.org/10.3934/fods.2020015.
|
Bolton, T., and L. Zanna, 2019: Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Model. Earth Syst., 11, 376–399, https://doi.org/10.1029/2018MS001472.
|
Bonavita, M., and P. Laloyaux, 2020: Machine learning for model error inference and correction. J. Adv. Model. Earth Syst., 12, e2020MS002232, https://doi.org/10.1029/2020MS002232.
|
Bonavita, M., L. Isaksen, and E. Hólm, 2012: On the use of EDA background error variances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 138, 1540–1559, https://doi.org/10.1002/qj.1899.
|
Bonavita, M., M. Hamrud, and L. Isaksen, 2015: EnKF and hybrid gain ensemble data assimilation. Part II: EnKF and hybrid gain results. Mon. Wea. Rev., 143, 4865–4882, https://doi.org/10.1175/MWR-D-15-0071.1.
|
Bormann, N., H. Lawrence, and J. Farnan, 2019: Global Observing System Experiments in the ECMWF Assimilation System. ECMWF Technical Memoranda 839, ECMWF, Shinfield Park, 23 pp.
|
Brajard, J., A. Carrassi, M. Bocquet, et al., 2021: Combining data assimilation and machine learning to infer unresolved scale parametrization. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 379, 20200086, https://doi.org/10.1098/rsta.2020.0086.
|
|
|
Buehner, M., P. L. Houtekamer, C. Charette, et al., 2010a: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Wea. Rev., 138, 1550–1566, https://doi.org/10.1175/2009MWR3157.1.
|
Buehner, M., P. L. Houtekamer, C. Charette, et al., 2010b: Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 1567–1586, https://doi.org/10.1175/2009MWR3158.1.
|
Buehner, M., R. McTaggart-Cowan, A. Beaulne, et al., 2015: Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part I: The global system. Mon. Wea. Rev., 143, 2532–2559, https://doi.org/10.1175/MWR-D-14-00354.1.
|
Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 2887–2908, https://doi.org/10.1002/qj.49712556006.
|
Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719–1724, https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2. doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
|
Caron, J. F., T. Milewski, M. Buehner, et al., 2015: Implementation of deterministic weather forecasting systems based on ensemble-variational data assimilation at Environment Canada. Part II: The regional system. Mon. Wea. Rev., 143, 2560–2580, https://doi.org/10.1175/MWR-D-14-00353.1.
|
|
Cha, D.-H., and Y. Q. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model. Mon. Wea. Rev., 141, 964–986, https://doi.org/10.1175/MWR-D-12-00077.1.
|
Chan, P. W., N. G. Wu, C. Z. Zhang, et al., 2018: The first complete dropsonde observation of a tropical cyclone over the South China Sea by the Hong Kong Observatory. Weather, 73, 227–234, https://doi.org/10.1002/wea.3095.
|
Chan, P.-W., W. Han, B. Mak, et al., 2023: Ground-space-sky observing system experiment during tropical cyclone Mulan in August 2022. Adv. Atmos. Sci., 40, 194–200, https://doi.org/10.1007/s00376-022-2267-z.
|
Chen, B. Y., M. Mu, and X. H. Qin, 2013: The impact of assimilating dropwindsonde data deployed at different sites on typhoon track forecasts. Mon. Wea. Rev., 141, 2669–2682, https://doi.org/10.1175/MWR-D-12-00142.1.
|
Chen, F., X. D. Liang, and H. Ma, 2017: Application of IVAP-based observation operator in radar radial velocity assimilation: The case of typhoon fitow. Mon. Wea. Rev., 145, 4187–4203, https://doi.org/10.1175/MWR-D-17-0002.1.
|
Chen, H. Q., Y. D. Chen, J. D. Gao, et al., 2020: A radar reflectivity data assimilation method based on background-dependent hydrometeor retrieval: An observing system simulation experiment. Atmos. Res., 243, 105022, https://doi.org/10.1016/j.atmosres.2020.105022.
|
|
Chen, M., M. X. Chen, and S. Y. Fan, 2014: The real-time radar radial velocity 3DVar assimilation experiments for application to an operational forecast model in North China. Acta Meteor. Sinica, 72, 658–677, https://doi.org/10.11676/qxxb2014.070. (in Chinese)
|
|
Chen, X. C., and F. Q. Zhang, 2019: Development of a convection-permitting air-sea-coupled ensemble data assimilation system for tropical cyclone prediction. J. Adv. Model. Earth Syst., 11, 3474–3496, https://doi.org/10.1029/2019MS001795.
|
Chen, X. Y., Y. D. Chen, and D. M. Meng, 2022: Assimilation of radar data based on cloud-dependent background error covariance and its impact on rainfall forecasting. Acta Meteor. Sinica, 80, 243–256, https://doi.org/10.11676/qxxb2022.011. (in Chinese)
|
|
Chen, Y. D., H. L. Wang, J. Z. Min, et al., 2015: Variational assimilation of cloud liquid/ice water path and its impact on NWP. J. Appl. Meteor. Climatol., 54, 1809–1825, https://doi.org/10.1175/JAMC-D-14-0243.1.
|
Chen, Y. D., H. Q. Chen, J. Z. Sun, et al., 2018: Nonlinear characteristics of model variables corresponding to radar observations and its effects on 4D-VAR assimilation. J. Trop. Meteor., 34, 721–732, https://doi.org/10.16032/j.issn.1004-4965.2018.06.001. (in Chinese)
|
Chen, Y. D., X. Z. Liu, S. Y. Fan, et al., 2025: Assimilation of radar radial velocity in the clear-air region and its impact on forecasting. J. Meteor. Res., 39, 272–287, https://doi.org/10.1007/s13351-025-4186-2.
|
|
Chou, J. F., 1974: The usage of past observations in numerical weather prediction. Sci. China, 4, 635–644. (in Chinese)
|
Chou, J. F., 2007: An innovative road to numerical weather prediction-from initial value problem to inverse problem. Acta Meteor. Sinica, 65, 673–682, https://doi.org/10.11676/qxxb2007.061. (in Chinese)
|
Chouinard, C., J. Hallé, C. Charette, et al., 2002: Recent improvements in the use of TOVS satellite radiances in the Unified 3D-Var system of the Canadian Meteorological Centre. ITSC XII Proceedings, Lorne, Australia, 27 pp.
|
Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quart. J. Roy. Meteor. Soc., 139, 1445–1461, https://doi.org/10.1002/qj.2054.
|
Collard, A. D., 2007: Selection of IASI channels for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 133, 1977–1991, https://doi.org/10.1002/qj.178.
|
|
Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, https://doi.org/10.1002/qj.49712051912.
|
|
Da Silva, A., J. Pfaendtner, J. Guo, et al., 1995: Assessing the effects of data selection with the DAO physical-space statistical analysis system. Proceedings of the 2nd WMO Symposium on Assimilation of Observations in Meteorology and Oceanography, World Meteorological Organization, Geneva, 273–278.
|
Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, Cambridge, 472 pp.
|
Daley, R., 1995: Estimating the wind field from chemical constituent observations: Experiments with a one-dimensional extended Kalman filter. Mon. Wea. Rev., 123, 181–198, https://doi.org/10.1175/1520-0493(1995)123<0181:ETWFFC>2.0.CO;2. doi: 10.1175/1520-0493(1995)123<0181:ETWFFC>2.0.CO;2
|
Derber, J., and F. Bouttier, 1999: A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus A Dyn. Meteor. Oceanogr., 51, 195–221, https://doi.org/10.3402/tellusa.v51i2.12316.
|
|
Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287–2299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2. doi: 10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2
|
Desmarais, A. J., S. Tracton, R. McPherson, et al., 1978: The NMC Report on the Data Systems Test. NASA Contract S-70252-AG, National Meteorological Center, Camp Springs, Maryland, 313 pp.
|
Di, D., J. Li, Z. L. Li, et al., 2024: Enhancing clear radiance generation for geostationary hyperspectral infrared sounder using high temporal resolution information. Geophys. Res. Lett., 51, e2023GL107194, https://doi.org/10.1029/2023GL107194.
|
Douc, R., and O. Cappé, 2005: Comparison of resampling schemes for particle filtering. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, IEEE, Zagreb, Croatia, 64–69, https://doi.org/10.1109/ISPA.2005.195385.
|
|
Druyan, L. M., T. Ben-Amram, Z. Alperson, et al., 1978: The impact of VTPR data on numerical forecasts of the Israel Meteorological Service. Mon. Wea. Rev., 106, 859–869, https://doi.org/10.1175/1520-0493(1978)106<0859:TIOVDO>2.0.CO;2. doi: 10.1175/1520-0493(1978)106<0859:TIOVDO>2.0.CO;2
|
Duan, W. S., and X. H. Qin, 2022: Application of nonlinear optimal perturbation methods in the targeting observations and field campaigns of tropical cyclones. Adv. Earth Sci., 37, 165–176, https://doi.org/10.11867/j.issn.1001-8166.2022.010. (in Chinese)
|
Duan, W. S., X. Q. Li, and B. Tian, 2018: Towards optimal observational array for dealing with challenges of El Niño-Southern Oscillation predictions due to diversities of El Niño. Climate Dyn., 51, 3351–3368, https://doi.org/10.1007/s00382-018-4082-x.
|
|
|
Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. Oceans, 99, 24821–24852, https://doi.org/10.1029/94JC01894.
|
|
Eliassen, A., J. S. Sawyer, and J. Smagorinsky, 1960: Upper Air Network Requirements for Numerical Weather Prediction. Technical Note No 29, World Meteorological Organization, Geneva, Switzerland, 135 pp.
|
Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pacific J. Atmos. Sci., 44, 209–231.
|
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Oceans, 99, 10143–10162, https://doi.org/10.1029/94JC00572.
|
Evensen, G., and P. J. van Leeuwen, 2000: An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev., 128, 1852–1867, https://doi.org/10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2. doi: 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO;2
|
Eyre, J. R., and A. C. Lorenc, 1989: Direct use of satellite sounding radiances in numerical weather prediction. Meteor. Mag., 118, 13–16.
|
Eyre, J. R., G. A. Kelly, A. P. McNally, et al., 1993: Assimilation of TOVS radiance information through one-dimensional variational analysis. Quart. J. Roy. Meteor. Soc., 119, 1427–1463, https://doi.org/10.1002/qj.49711951411.
|
Eyre, J. R., S. J. English, and M. Forsythe, 2020: Assimilation of satellite data in numerical weather prediction. Part I: The early years. Quart. J. Roy. Meteor. Soc., 146, 49–68, https://doi.org/10.1002/qj.3654.
|
Fan, S. Y., H. L. Wang, M. Chen, et al., 2013: Study of the data assimilation of radar reflectivity with the WRF 3D-Var. Acta Meteor. Sinica, 71, 527–537, https://doi.org/10.11676/qxxb2013.032. (in Chinese)
|
Farchi, A., M. Bocquet, P. Laloyaux, et al., 2021a: A comparison of combined data assimilation and machine learning methods for offline and online model error correction. J. Comput. Sci., 55, 101468, https://doi.org/10.1016/j.jocs.2021.101468.
|
Farchi, A., P. Laloyaux, M. Bonavita, et al., 2021b: Using machine learning to correct model error in data assimilation and forecast applications. Quart. J. Roy. Meteor. Soc., 147, 3067–3084, https://doi.org/10.1002/qj.4116.
|
Feng, J., X. H. Qin, C. Q. Wu, et al., 2022: Improving typhoon predictions by assimilating the retrieval of atmospheric temperature profiles from the FengYun-4A’s Geostationary Interferometric Infrared Sounder (GIIRS). Atmos. Res., 280, 106391, https://doi.org/10.1016/j.atmosres.2022.106391.
|
|
Forsythe, M., H. Berger, C. Velden, et al., 2007: Atmospheric motion vectors: past, present and future. ECMWF seminar on recent development in the use of satellite observations in NWP, Exeter, UK, 3-7 September, ECMWF, 79 pp.
|
Fraccaro, M., S. Kamronn, U. Paquet, et al., 2017: A disentangled recognition and nonlinear dynamics model for unsupervised learning. Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., Long Beach, 3601–3610.
|
Gagne II, D. J., H. M. Christensen, A. C. Subramanian, et al., 2020: Machine learning for stochastic parameterization: Generative adversarial networks in the Lorenz '96 model. J. Adv. Model. Earth Syst., 12, e2019MS001896, https://doi.org/10.1029/2019MS001896.
|
Gandin, L. S., 1963: Objective Analysis of Meteorological Fields. Hydromet Press, Leningrad, 242 pp.
|
Gao, J. D., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 1054–1065, https://doi.org/10.1175/JAS-D-11-0162.1.
|
Gao, J. D., M. Xue, A. Shapiro, et al., 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128–2142, https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2. doi: 10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2
|
Gao, J. D., M. Xue, K. Brewster, et al., 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457–469, https://doi.org/10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2. doi: 10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2
|
|
Geer, A. J., 2021: Learning earth system models from observations: machine learning or data assimilation? Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 379, 20200089, https://doi.org/10.1098/rsta.2020.0089.
|
Geer, A. J., P. Bauer, and P. Lopez, 2008: Lessons learnt from the operational 1D + 4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF. Quart. J. Roy. Meteor. Soc., 134, 1513–1525, https://doi.org/10.1002/qj.304.
|
Geer, A. J., P. Bauer, and P. Lopez, 2010: Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. Quart. J. Roy. Meteor. Soc., 136, 1886–1905, https://doi.org/10.1002/qj.681.
|
Geer, A. J., K. Lonitz, P. Weston, et al., 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191–1217, https://doi.org/10.1002/qj.3202.
|
Ghil, M., S. Cohn, J. Tavantzis, et al., 1981: Applications of estimation theory to numerical weather prediction. Dynamic Meteorology: Data Assimilation Methods, L. Bengtsson, M. Ghil, and E. Källén, Eds., Springer, New York, 139–224, https://doi.org/10.1007/978-1-4612-5970-1_5.
|
Gilchrist, A., 1982: JSC Study Conference on Observing Systems Experiments, 19–22 April 1982. Numerical Experimentation Programme report No. 4, Geneva, Switzerland,WMO, 55 pp.
|
|
Gong, J. D., Y. Z. Liu, and L. Zhang, 2019: A study of simplification and linearization of the NSAS deep convection cumulus parameterization scheme for 4D-Var. Acta Meteor. Sinica, 77, 595–616, https://doi.org/10.11676/qxxb2019.048. (in Chinese)
|
Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F (Radar Signal Process.), 140, 107–113, https://doi.org/10.1049/ip-f-2.1993.0015.
|
|
Guo, X. R., Y. L. Zhang, Z. H. Yan, et al., 1995: The limited area analysis and forecast system and its operational application. Acta Meteor. Sinica, 53, 306–318, https://doi.org/10.11676/qxxb1995.036. (in Chinese)
|
|
Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550–560, https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2. doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
|
Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. Wea. Rev., 128, 2905–2919, https://doi.org/10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2. doi: 10.1175/1520-0493(2000)128<2905:AHEKFV>2.0.CO;2
|
Han, W., and N. Bormman, 2016: Constrained Adaptive Bias Correction for Satellite Radiance Assimilation in the ECMWF 4D-Var System. ECMWF Technical Memoranda, NO. 783, ECMWF, Shinfield Park, 1–60, https://doi.org/10.21957/rex0omex.
|
Han, W., R. Y. Yin, J. Li, et al., 2023: Assimilation of geostationary hyperspectral infrared sounders (GeoHIS): Progresses and perspectives. Numerical Weather Prediction: East Asian Perspectives, S. K. Park, Ed., Springer, Cham, 205–216, https://doi.org/10.1007/978-3-031-40567-9_8.
|
Han, W., R. Y. Yin, J. Li, et al., 2025: Targeted sounding observations from geostationary satellite and impacts on high impact weather forecasts. Sci. China Earth Sci., 68, 963–976, https://doi.org/10.1007/s11430-024-1489-5.
|
Hatfield, S., M. Chantry, P. Dueben, et al., 2021: Building tangent-Linear and adjoint models for data assimilation with neural networks. J. Adv. Model. Earth Syst., 13, e2021MS002521, https://doi.org/10.1029/2021MS002521.
|
Hawkness-Smith, L. D., and D. Simonin, 2021: Radar reflectivity assimilation using hourly cycling 4D-Var in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 147, 1516–1538, https://doi.org/10.1002/qj.3977.
|
He, H., L. L. Lei, J. S. Whitaker, et al., 2020: Impacts of assimilation frequency on ensemble Kalman filter data assimilation and imbalances. J. Adv. Model. Earth Syst., 12, e2020MS002187, https://doi.org/10.1029/2020MS002187.
|
He, L. L., and F. Z. Weng, 2023: Improved microwave ocean emissivity and reflectivity models derived from two-scale roughness theory. Adv. Atmos. Sci., 40, 1923–1938, https://doi.org/10.1007/s00376-023-2247-y.
|
He, Y. J., B. Wang, M. M. Liu, et al., 2017: Reduction of initial shock in decadal predictions using a new initialization strategy. Geophys. Res. Lett., 44, 8538–8547, https://doi.org/10.1002/2017GL074028.
|
Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS radio occultation measurements. Geophys. Res. Lett., 32, L03804, https://doi.org/10.1029/2004GL020806.
|
Hoke, J. E., and R. A. Anthes, 1976: The initialization of numerical models by a dynamic-initialization technique. Mon. Wea. Rev., 104, 1551–1556, https://doi.org/10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2. doi: 10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2
|
Hollingsworth, A., D. B. Shaw, P. Lönnberg, et al., 1986: Monitoring of observation and analysis quality by a data assimilation system. Mon. Wea. Rev., 114, 861–879, https://doi.org/10.1175/1520-0493(1986)114<0861:MOOAAQ>2.0.CO;2. doi: 10.1175/1520-0493(1986)114<0861:MOOAAQ>2.0.CO;2
|
Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796–811, https://doi.org/10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2. doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
|
Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123–137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2. doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
|
|
Houtekamer, P. L., L. Lefaivre, J. Derome, et al., 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225–1242, https://doi.org/10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2. doi: 10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2
|
Houtekamer, P. L., H. L. Mitchell, G. Pellerin, et al., 2005: Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604–620, https://doi.org/10.1175/MWR-2864.1.
|
|
Howard, L. J., A. Subramanian, and I. Hoteit, 2024: A machine learning augmented data assimilation method for high-resolution observations. J. Adv. Model. Earth Syst., 16, e2023MS003774, https://doi.org/10.1029/2023MS003774.
|
Huang, J., Y. D. Chen, H. Q. Chen, et al., 2022: Real-time background-dependent indirect assimilation of radar reflectivity factor and experiments for multi heavy rainfall cases. Chinese J. Atmos. Sci., 46, 691–706, https://doi.org/10.3878/j.issn.1006-9895.2201.21145. (in Chinese)
|
|
|
Huang, L. W., L. Gianinazzi, Y. J. Yu, et al., 2024: DiffDA: A diffusion model for weather-scale Data Assimilation. arXiv, 2401.05932, https://doi.org/10.48550/arXiv.2401.05932.
|
Huang, S. X., J. J. Teng, J. Xiang, et al., 2003: Generalized variational optimization analysis method of 3-D wind field. Proceedings of the National Symposium on Hydrodynamics and National Conference on Hydrodynamics, China Ocean Press, Beijing, 131–140. (in Chinese)
|
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom., 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.
|
Irvine, E. A., S. L. Gray, J. Methven, et al., 2011: Forecast impact of targeted observations: Sensitivity to observation error and proximity to steep orography. Mon. Wea. Rev., 139, 69–78, https://doi.org/10.1175/2010MWR3459.1.
|
Jansa, A., P. Arbogast, A. Doerenbecher, et al., 2011: A new approach to sensitivity climatologies: The DTS-MEDEX-2009 campaign. Nat. Hazards Earth Syst. Sci., 11, 2381–2390, https://doi.org/10.5194/nhess-11-2381-2011.
|
Jerger, D., 2013: Radar forward operator for verification of cloud resolving simulations within the COSMO model. Ph.D. dissertation, Karlsruher Institut für Technologie, Karlsruher, https://doi.org/10.5445/KSP/1000038411.
|
Jiang, L., W. S. Duan, and H. L. Liu, 2022: The most sensitive initial error of sea surface height anomaly forecasts and its implication for target observations of mesoscale eddies. J. Phys. Oceanogr., 52, 723–740, https://doi.org/10.1175/JPO-D-21-0200.1.
|
Jiang, L., W. S. Duan, and H. Wang, 2024: The sensitive area for targeting observations of paired mesoscale eddies associated with sea surface height anomaly forecasts. J. Geophys. Res. Oceans, 129, e2023JC020572, https://doi.org/10.1029/2023JC020572.
|
Jiao, M. Y., 2010: Modern Numerical Weather Prediction Operations. Meteorological Press, Beijing, 260 pp. (in Chinese)
|
Johnson, B. T., C. Dang, P. Stegmann, et al., 2023: The Community Radiative Transfer Model (CRTM): Community-focused collaborative model development accelerating research to operations. Bull. Amer. Meteor. Soc., 104, E1817–E1830, https://doi.org/10.1175/BAMS-D-22-0015.1.
|
Jones, T. A., D. J. Stensrud, P. Minnis, et al., 2013: Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Wea. Rev., 141, 2272–2289, https://doi.org/10.1175/MWR-D-12-00238.1.
|
Joo, S., J. Eyre, and R. Marriott, 2013: The impact of MetOp and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method. Mon. Wea. Rev., 141, 3331–3342, https://doi.org/10.1175/MWR-D-12-00232.1.
|
Joo, S.-W., and D.-K. Lee, 2002: The use of ATOVS data in Korea meteorological administration (KMA). Proceedings of the 12th International TOVS Study Conference, BMRC, Lorne, Australia, 128–137.
|
Jung, Y., G. F. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228–2245, https://doi.org/10.1175/2007MWR2083.1.
|
Jung, Y., M. Xue, G. F. Zhang, et al., 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246–2260, https://doi.org/10.1175/2007MWR2288.1.
|
|
|
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, Cambridge, 341 pp.
|
Kalnay, E., and S.-C. Yang, 2010: Accelerating the spin-up of ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 136, 1644–1651, https://doi.org/10.1002/qj.652.
|
Kalnay, E., D. L. T. Anderson, A. F. Bennett, et al., 1997: Data assimilation in the ocean and in the atmosphere: What should be next? J. Meteor. Soc. Japan, 75, 489–496, https://doi.org/10.2151/jmsj1965.75.1B_489.
|
Kan, W. L., Y.-N. Shi, J. Yang, et al., 2024: Improvements of the microwave gaseous absorption scheme based on statistical regression and its application to ARMS. J. Geophys. Res. Atmos., 129, e2024JD040732, https://doi.org/10.1029/2024JD040732.
|
Kang, J.-S., E. Kalnay, J. J. Liu, et al., 2011: “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation. J. Geophys. Res. Atmos., 116, D09110, https://doi.org/10.1029/2010JDO14673.
|
Karbou, F., É. Gérard, and F. Rabier, 2006: Microwave land emissivity and skin temperature for AMSU-A and -B assimilation over land. Quart. J. Roy. Meteor. Soc., 132, 2333–2355, https://doi.org/10.1256/qj.05.216.
|
Karbou, F., E. Gérard, and F. Rabier, 2010: Global 4DVAR assimilation and forecast experiments using AMSU observations over land. Part I: Impacts of various land surface emissivity parameterizations. Wea. Forecasting, 25, 5–19, https://doi.org/10.1175/2009WAF2222243.1.
|
Kawabata, T., T. Schwitalla, A. Adachi, et al., 2018: Observational operators for dual polarimetric radars in variational data assimilation systems (PolRad VAR v1.0). Geosci. Model Dev., 11, 2493–2501, https://doi.org/10.5194/gmd-11-2493-2018.
|
|
Kleist, D. T., and K. Ide, 2015a: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143, 433–451, https://doi.org/10.1175/MWR-D-13-00351.1.
|
Kleist, D. T., and K. Ide, 2015b: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452–470, https://doi.org/10.1175/MWR-D-13-00350.1.
|
Koo, C. C., 1958a: On the equivalency of formulations of weather forecasting as an initial value problem and as an “evolution” problem. Acta Meteor. Sinica, 29, 93–98, https://doi.org/10.11676/qxxb1958.011. (in Chinese)
|
|
Kotsuki, S., K. Shiraishi, and A. Okazaki, 2024: Ensemble data assimilation to diagnose AI-based weather prediction model: A case with ClimaX version 0.3.1. arXiv, 2407.17781, https://doi.org/10.48550/arXiv.2407.17781.
|
Krishnan, R. G., U. Shalit, and D. Sontag, 2015: Deep Kalman filters. arXiv, 1511.05121, https://doi.org/10.48550/arXiv.1511.05121.
|
Krishnan, R. G., U. Shalit, and D. Sontag, 2017: Structured inference networks for nonlinear state space models. Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI, San Francisco, USA, 2101–2109, https://doi.org/10.1609/aaai.v31i1.10779.
|
Krzeminski, B., N. Bormann, F. Karbou, et al., 2009: Improved use of surface-sensitive microwave radiances at ECMWF. Proceedings of the EUMETSAT Meteorol. Satell. Conf., 21–25.
|
Lai, A. W., J. Z. Min, J. D. Gao, et al., 2020: Assimilation of radar data, pseudo water vapor, and potential temperature in a 3DVAR framework for improving precipitation forecast of severe weather events. Atmosphere, 11, 182, https://doi.org/10.3390/atmos11020182.
|
Laloyaux, P., M. Balmaseda, D. Dee, et al., 2016: A coupled data assimilation system for climate reanalysis. Quart. J. Roy. Meteor. Soc., 142, 65–78, https://doi.org/10.1002/qj.2629.
|
Lan, W. R., J. Zhu, M. Xue, et al., 2010a: Storm-scale ensemble Kalman filter data assimilation experiments using simulated Doppler radar data. Part I: Perfect model tests. Chinese J. Atmos. Sci., 34, 640–652, https://doi.org/10.3878/j.issn.1006-9895.2010.03.15. (in Chinese)
|
Lan, W. R., J. Zhu, M. Xue, et al., 2010b: Storm-scale ensemble Kalman filter data assimilation experiments using simulated Doppler radar data Part II: Imperfect model tests. Chinese J. Atmos. Sci., 34, 737–753, https://doi.org/10.3878/j.issn.1006-9895.2010.04.07. (in Chinese)
|
|
Lei, L. L., and J. L. Anderson, 2014a: Comparisons of empirical localization techniques for serial ensemble Kalman filters in a simple atmospheric general circulation model. Mon. Wea. Rev., 142, 739–754, https://doi.org/10.1175/MWR-D-13-00152.1.
|
Lei, L. L., and J. L. Anderson, 2014b: Impacts of frequent assimilation of surface pressure observations on atmospheric analyses. Mon. Wea. Rev., 142, 4477–4483, https://doi.org/10.1175/MWR-D-14-00097.1.
|
|
Lei, L. L., D. R. Stauffer, S. E. Haupt, et al., 2012: A hybrid nudging-ensemble Kalman filter approach to data assimilation. Part I: Application in the Lorenz system. Tellus A: Dyn. Meteor. Oceanogr., 64, 18484, https://doi.org/10.3402/tellusa.v64i0.18484.
|
Lei, L. L., J. L. Anderson, and G. S. Romine, 2015: Empirical localization functions for ensemble Kalman filter data assimilation in regions with and without precipitation. Mon. Wea. Rev., 143, 3664–3679, https://doi.org/10.1175/MWR-D-14-00415.1.
|
Lei, L. L., J. S. Whitaker, and C. Bishop, 2018: Improving assimilation of radiance observations by implementing model space localization in an ensemble Kalman filter. J. Adv. Model. Earth Syst., 10, 3221–3232, https://doi.org/10.1029/2018MS001468.
|
Lei, L. L., J. S. Whitaker, J. L. Anderson, et al., 2020: Adaptive localization for satellite radiance observations in an ensemble Kalman filter. J. Adv. Model. Earth Syst., 12, e2019MS001693, https://doi.org/10.1029/2019MS001693.
|
|
|
|
|
Li, J., and G. Q. Liu, 2016: Direct assimilation of Chinese FY-3C Microwave Temperature Sounder-2 radiances in the global GRAPES system. Atmos. Meas. Tech., 9, 3095–3113, https://doi.org/10.5194/amt-9-3095-2016.
|
|
Li, J., Z. K. Qin, and G. Q. Liu, 2016: A new generation of Chinese FY-3C microwave sounding measurements and the initial assessments of its observations. Int. J. Remote Sens., 37, 4035–4058, https://doi.org/10.1080/01431161.2016.1207260.
|
Li, J., A. J. Geer, K. Okamoto, et al., 2022a: Satellite all-sky infrared radiance assimilation: Recent progress and future perspectives. Adv. Atmos. Sci., 39, 9–21, https://doi.org/10.1007/s00376-021-1088-9.
|
Li, J., Y. R. Zhang, D. Di, et al., 2022b: The influence of sub-footprint cloudiness on three-dimensional horizontal wind from geostationary hyperspectral infrared sounder observations. Geophys. Res. Lett., 49, e2022GL098460, https://doi.org/10.1029/2022GL098460.
|
Li, J., Z. K. Qin, G. Q. Liu, et al., 2024: Added benefit of the early-morning-orbit satellite Fengyun-3E on the global microwave sounding of the three-orbit constellation. Adv. Atmos. Sci., 41, 39–52, https://doi.org/10.1007/s00376-023-2388-z.
|
|
Li, X., C. Chen, X. Shen X., et al., 2020: Review on development of a scalable high-order nonhydrostatic multi-moment constrained finite volume dynamical core. arXiv, 2004.05784, https://doi.org/10.48550/arXiv.2004.05784.
|
Li, X. L., and Y. Z. Liu, 2019: The improvement of GRAPES global extratropical singular vectors and experimental study. Acta Meteor. Sinica, 77, 552–562, https://doi.org/10.11676/qxxb2019.020. (in Chinese)
|
Li, X. L., J. R. Mecikalski, and D. Posselt, 2017: An ice-phase microphysics forward model and preliminary results of polarimetric radar data assimilation. Mon. Wea. Rev., 145, 683–708, https://doi.org/10.1175/MWR-D-16-0035.1.
|
Li, Y. Z., X. G. Wang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF hybrid ensemble–3DVAR system for the prediction of Hurricane Ike (2008). Mon. Wea. Rev., 140, 3507–3524, https://doi.org/10.1175/MWR-D-12-00043.1.
|
Li, Z. C., 1994: Medium-range numerical weather prediction system at the national meteorological center of China. Acta Meteor. Sinica, 52, 297–307, https://doi.org/10.11676/qxxb1994.038. (in Chinese)
|
Li, Z. C., and G. Q. Qiu, 1992: Operational system for medium-range numerical weather prediction. Meteor. Mon., 18, 50–52. (in Chinese)
|
Li, Z. T., and W. Han, 2024: Impact of HY-2B SMR radiance assimilation on CMA global medium-range weather forecasts. Quart. J. Roy. Meteor. Soc., 150, 937–957, https://doi.org/10.1002/qj.4630.
|
|
Liang, J. Y., K. Terasaki, and T. Miyoshi, 2023: A machine learning approach to the observation operator for satellite radiance data assimilation. J. Meteor. Soc. Japan, 101, 79–95, https://doi.org/10.2151/jmsj.2023-005.
|
Liang, X. D., 2007: An integrating velocity–azimuth process single-Doppler radar wind retrieval method. J. Atmos. Oceanic Technol., 24, 658–665, https://doi.org/10.1175/JTECH2047.1.
|
Liu, C. S., Q. N. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136, 3363–3373, https://doi.org/10.1175/2008MWR2312.1.
|
Liu, C. S., M. Xue, and R. Kong, 2019: Direct assimilation of radar reflectivity data using 3DVAR: Treatment of hydrometeor background errors and OSSE tests. Mon. Wea. Rev., 147, 17–29, https://doi.org/10.1175/MWR-D-18-0033.1.
|
Liu, C. S., M. Xue, and R. Kong, 2020: Direct variational assimilation of radar reflectivity and radial velocity data: Issues with nonlinear reflectivity operator and solutions. Mon. Wea. Rev., 148, 1483–1502, https://doi.org/10.1175/MWR-D-19-0149.1.
|
Liu, C. S., H. Q. Li, M. Xue, et al., 2022: Use of a reflectivity operator based on double-moment Thompson microphysics for direct assimilation of radar reflectivity in GSI-based hybrid En3DVar. Mon. Wea. Rev., 150, 907–926, https://doi.org/10.1175/MWR-D-21-0040.1.
|
Liu, H.-Y., Y. Q. Wang, J. Xu, et al., 2018: A dynamical initialization scheme for tropical cyclones under the influence of terrain. Wea. Forecasting, 33, 641–659, https://doi.org/10.1175/WAF-D-17-0139.1.
|
Liu, H., J. Xue, J. Gu, et al., 2010: GRAPES 3DVAR radar data assimilation and numerical simulation experiments with a torrential rain case. Acta Meteorologica Sinica, 68, 779–789, https://doi.org/10.11676/qxxb2010.074.
|
Liu, K., W. H. Guo, L. L. Da, et al., 2021: Improving the thermal structure predictions in the Yellow Sea by conducting targeted observations in the CNOP-identified sensitive areas. Sci. Rep., 11, 19518, https://doi.org/10.1038/s41598-021-98994-7.
|
Liu, R. X., Q. F. Lu, C. Q. Wu, et al., 2024: Assimilation of hyperspectral infrared atmospheric sounder data of FengYun-3E satellite and assessment of its impact on analyses and forecasts. Remote Sens., 16, 908, https://doi.org/10.3390/rs16050908.
|
Liu, Y., and J. S. Xue, 2014: Assimilation of global navigation satellite radio occultation observations in GRAPES: Operational implementation. J. Meteor. Res., 28, 1061–1074, https://doi.org/10.1007/s13351-014-4028-0.
|
Liu, Y. Z., X. S. Shen, and X. L. Li, 2013: Research on the singular vector perturbation of the GRAPES global model based on the total energy norm. Acta Meteor. Sinica, 71, 517–526, https://doi.org/10.11676/qxxb2013.043. (in Chinese)
|
Liu, Y. Z., J. D. Gong, L. Zhang, et al., 2019: Influence of linearized physical processes on the GRAPES 4DVAR. Acta Meteor. Sinica, 77, 196–209, https://doi.org/10.11676/qxxb2019.013. (in Chinese)
|
Lorenc, A. C., 1981: A global three-dimensional multivariate statistical interpolation scheme. Mon. Wea. Rev., 109, 701–721, https://doi.org/10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2. doi: 10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2
|
|
|
Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 3183–3203, https://doi.org/10.1256/qj.02.132.
|
Lorenc, A. C., N. E. Bowler, A. M. Clayton, et al., 2015: Comparison of Hybrid-4DEnVar and Hybrid-4DVar data assimilation methods for Global NWP. Mon. Wea. Rev., 143, 212–229, https://doi.org/10.1175/MWR-D-14-00195.1.
|
|
|
Luo, T. L., S. Ma, W. M. Zhang, et al., 2025: Assimilation of AMSU-A data using the ARMS as an observation operator in the YH4DVAR system. J. Meteor. Res., 39, 252–271, https://doi.org/10.1007/s13351-025-4206-2.
|
Luo, Y., X. D. Liang, and M. X. Chen, 2014: Improvement of radial wind data assimilation of single Doppler radar. J. Meteor. Sci., 34, 620–628, https://doi.org/10.3969/2013jms.0038. (in Chinese)
|
Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019–1034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2. doi: 10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2
|
|
Ma, Z., J. Li, W. Han, et al., 2021: Four-Dimensional wind fields from geostationary hyperspectral infrared sounder radiance measurements with high temporal resolution. Geophys. Res. Lett., 48, e2021GL093794, https://doi.org/10.1029/2021GL093794.
|
Malartic, Q., A. Farchi, and M. Bocquet, 2022: State, global, and local parameter estimation using local ensemble Kalman filters: Applications to online machine learning of chaotic dynamics. Quart. J. Roy. Meteor. Soc., 148, 2167–2193, https://doi.org/10.1002/qj.4297.
|
Matricardi, M., and A. P. McNally, 2014: The direct assimilation of principal components of IASI spectra in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 140, 573–582, https://doi.org/10.1002/qj.2156.
|
McNally, A. P., and M. Vesperini, 1996: Variational analysis of humidity information from TOVS radiances. Quart. J. Roy. Meteor. Soc., 122, 1521–1544, https://doi.org/10.1002/qj.49712253504.
|
McNally, A. P., and P. D. Watts, 2003: A cloud detection algorithm for high-spectral-resolution infrared sounders. Quart. J. Roy. Meteor. Soc., 129, 3411–3423, https://doi.org/10.1256/qj.02.208.
|
McPherson, R. D., K. H. Bergman, R. E. Kistler, et al., 1979: The NMC operational global data assimilation system. Mon. Wea. Rev., 107, 1445–1461, https://doi.org/10.1175/1520-0493(1979)107<1445:TNOGDA>2.0.CO;2. doi: 10.1175/1520-0493(1979)107<1445:TNOGDA>2.0.CO;2
|
Meng, D. M., Y. D. Chen, H. L. Wang, et al., 2019: The evaluation of EnVar method including hydrometeors analysis variables for assimilating cloud liquid/ice water path on prediction of rainfall events. Atmos. Res., 219, 1–12, https://doi.org/10.1016/j.atmosres.2018.12.017.
|
Meng, D. M., Z.-M. Tan, J. Li, et al., 2024: Added value of three-dimensional horizontal winds from geostationary interferometric infrared sounder for typhoon forecast in a regional NWP model. J. Geophys. Res. Atmos., 129, e2024JD040736, https://doi.org/10.1029/2024JD040736.
|
Meng, Z. Y., and F. Q. Zhang, 2008: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522–540, https://doi.org/10.1175/2007MWR2106.1.
|
Meng, Z. Y., F. Q. Zhang, D. H. Luo, et al., 2019: Review of Chinese atmospheric science research over the past 70 years: Synoptic meteorology. Sci. China Earth Sci., 62, 1946–1991, https://doi.org/10.1007/s11430-019-9534-6.
|
Ming, J., and J. A. Zhang, 2018: Direct measurements of momentum flux and dissipative heating in the surface layer of tropical cyclones during landfalls. J. Geophys. Res. Atmos., 123, 4926–4938, https://doi.org/10.1029/2017JD028076.
|
Ming, J., J. A. Zhang, R. F. Rogers, et al., 2014: Multiplatform observations of boundary layer structure in the outer rainbands of landfalling typhoons. J. Geophys. Res. Atmos., 119, 7799–7814, https://doi.org/10.1002/2014JD021637.
|
Mishchenko, M. I., A. A. Lacis, and L. D. Travis, 1994: Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 51, 491–510, https://doi.org/10.1016/0022-4073(94)90149-X.
|
Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 1519–1535, https://doi.org/10.1175/2010MWR3570.1.
|
|
|
Mu, M., F. F. Zhou, and H. L. Wang, 2009: A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Wea. Rev., 137, 1623–1639, https://doi.org/10.1175/2008MWR2640.1.
|
Mu, M., R. Feng, and W. S. Duan, 2017: Relationship between optimal precursors for Indian Ocean Dipole events and optimally growing initial errors in its prediction. J. Geophys. Res. Oceans, 122, 1141–1153, https://doi.org/10.1002/2016JC012527.
|
|
Ohring, G., 1979: Impact of satellite temperature sounding data on weather forecasts. Bull. Amer. Meteor. Soc., 60, 1142–1147, https://doi.org/10.1175/1520-0477(1979)060<1142:IOSTSD>2.0.CO;2. doi: 10.1175/1520-0477(1979)060<1142:IOSTSD>2.0.CO;2
|
Okamoto, K., Y. Takeuchi, Y. Kaido, et al., 2002: Recent developments in assimilation of ATOVS at JMA. Proceedings of the 12th International TOVS Study Conference, BMRC, Lorne, Australia, 226–233.
|
Okamoto, K., A. P. McNally, and W. Bell, 2014: Progress towards the assimilation of all-sky infrared radiances: An evaluation of cloud effects. Quart. J. Roy. Meteor. Soc., 140, 1603–1614, https://doi.org/10.1002/qj.2242.
|
Oue, M., A. Tatarevic, P. Kollias, et al., 2020: The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: Description and applications of a virtual observatory. Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020.
|
Palmer, T. N., R. Gelaro, J. Barkmeijer, et al., 1998: Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633–653, https://doi.org/10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2. doi: 10.1175/1520-0469(1998)055<0633:SVMAAO>2.0.CO;2
|
|
Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2. doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
|
Peng, Z. Y., L. L. Lei, and Z.-M. Tan, 2024: A hybrid deep learning and data assimilation method for model error estimation. Sci. China Earth Sci., 67, 3655–3670, https://doi.org/10.1007/s11430-024-1395-7.
|
|
|
Poli, P., P. Moll, D. Puech, et al., 2009: Quality control, error analysis, and impact assessment of FORMOSAT-3/COSMIC in numerical weather prediction. Terr. Atmos. Oceanic Sci., 20, 101–113, https://doi.org/10.3319/TAO.2008.01.21.02(F3C).
|
|
Poterjoy, J., and F. Q. Zhang, 2015: Systematic comparison of four-dimensional data assimilation methods with and without the tangent linear model using hybrid background error covariance: E4DVar versus 4DEnVar. Mon. Wea. Rev., 143, 1601–1621, https://doi.org/10.1175/MWR-D-14-00224.1.
|
Poterjoy, J., and F. Q. Zhang, 2016: Comparison of hybrid four-dimensional data assimilation methods with and without the tangent linear and adjoint models for predicting the life cycle of Hurricane Karl (2010). Mon. Wea. Rev., 144, 1449–1468, https://doi.org/10.1175/MWR-D-15-0116.1.
|
Prates, C., C. Sahin, and D. S. Richardson, 2009: Report on PREVIEW Data Targeting System. ECMWF Tech. Memo., 581, 31 pp.
|
Putnam, B., M. Xue, Y. Jung, et al., 2019: Ensemble Kalman filter assimilation of polarimetric radar observations for the 20 May 2013 Oklahoma tornadic supercell case. Monthly Weather Review, 147, 2511–2533
|
Qin, X. H., and M. Mu, 2012: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Quart. J. Roy. Meteor. Soc., 138, 185–197, https://doi.org/10.1002/qj.902.
|
Qin, X. H., W. S. Duan, P.-W. Chan, et al., 2023: Effects of dropsonde data in field campaigns on forecasts of tropical cyclones over the western North Pacific in 2020 and the role of CNOP sensitivity. Adv. Atmos. Sci., 40, 791–803, https://doi.org/10.1007/s00376-022-2136-9.
|
Qu, A. X., S. H. Ma, J. Li, et al., 2009: The initialization of tropical cyclones in the NMC global model Part II: Implementation. Acta Meteor. Sinica, 67, 727–735, https://doi.org/10.11676/qxxb2009.073. (in Chinese)
|
|
Qu, A. X., S. H. Ma, J. Zhang, et al., 2022: Typhoon initialization in the CMA global forecast system. Acta Meteor. Sinica, 80, 269–279, https://doi.org/10.11676/qxxb2022.014. (in Chinese)
|
Rabier, F., A. McNally, E. Andersson, et al., 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions. Quart. J. Roy. Meteor. Soc., 124, 1809–1829, https://doi.org/10.1002/qj.49712455003.
|
Rabier, F., N. Fourrié, D. Chafäi, et al., 2002: Channel selection methods for infrared atmospheric sounding interferometer radiances. Quart. J. Roy. Meteor. Soc., 128, 1011–1027, https://doi.org/10.1256/0035900021643638.
|
Rabier, F., P. Gauthier, C. Cardinali, et al., 2008: An update on THORPEX-related research in data assimilation and observing strategies. Nonlinear Processes Geophys., 15, 81–94, https://doi.org/10.5194/npg-15-81-2008.
|
Rasp, S., M. S. Pritchard, and P. Gentine, 2018: Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. USA, 115, 9684–9689, https://doi.org/10.1073/pnas.1810286115.
|
Robert, C. P., and G. Cassela, 2004: Monte Carlo Statistical Methods. 2nd ed. Springer-Verlag, New York, 645 pp, https://doi.org/10.1007/978-1-4757-4145-2.
|
|
|
Salonen, K., and N. Bormann, 2015: Atmospheric Motion Vector Observations in the ECMWF System: Fourth Year Report. EUMETSAT/ECMWF Fellowship Programme Research Report No. 36, European Centre for Medium Range Weather Forecasts, Shinfield Park, 1–32.
|
|
|
Saunders, R., E. Andersson, G. Kelly, et al., 1997: Developments in assimilating global TOVS data at the UK Met Office. Proceedings of the 9th International TOVS Study Conference, ECMWF, Igls, Austria, 417–428.
|
Saunders, R., J. Hocking, E. Turner, et al., 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018.
|
Schröttle, J., M. Weissmann, L. Scheck, et al., 2020: Assimilating visible and infrared radiances in idealized simulations of deep convection. Mon. Wea. Rev., 148, 4357–4375, https://doi.org/10.1175/MWR-D-20-0002.1.
|
Shao, A. M., C. J. Qiu, X. J. Wang, et al., 2016: Using the Newtonian relaxation technique in numerical sensitivity studies. Sci. China Earth Sci., 59, 2454–2462, https://doi.org/10.1007/s11430-016-0033-3.
|
Shapiro, M., and A. Thorpe, 2004: THORPEX International Science Plan. WMO/TD-No. 1246, WMO, Geneva, 1–57.
|
Shen, X. S., J. J. Wang, Z. C. Li, et al., 2020: China’s independent and innovative development of numerical weather prediction. Acta Meteor. Sinica, 78, 451–476, https://doi.org/10.11676/qxxb2020.030. (in Chinese)
|
Sheng, C. Y., D. Q. Xue, T. Lei, et al., 2006: Comparative experiments between effects of doppler radar data assimilation and inceasing horizontal resolution on short-range prediction. Acta Meteor. Sinica, 64, 293–307, https://doi.org/10.3321/j.issn:0577-6619.2006.03.004. (in Chinese)
|
Slivinski, L. C., D. E. Lippi, J. S. Whitaker, et al., 2022: Overlapping windows in a global hourly data assimilation system. Mon. Wea. Rev., 150, 1317–1334, https://doi.org/10.1175/MWR-D-21-0214.1.
|
Sluka, T. C., S. G. Penny, E. Kalnay, et al., 2016: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation. Geophys. Res. Lett., 43, 752–759, https://doi.org/10.1002/2015GL067238.
|
Smith, P. J., A. M. Fowler, and A. S. Lawless, 2015: Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model. Tellus A Dyn. Meteor. Oceanogr., 67, 27025, https://doi.org/10.3402/tellusa.v67.27025.
|
Smith, W. L., P. K. Rao, R. Koffler, et al., 1970: The determination of sea-surface temperature from satellite high resolution infrared window radiation measurements. Mon. Wea. Rev., 98, 604–611, https://doi.org/10.1175/1520-0493(1970)098<0604:TDOSST>2.3.CO;2. doi: 10.1175/1520-0493(1970)098<0604:TDOSST>2.3.CO;2
|
|
|
Sodhi, J. S., and F. Fabry, 2022: Benefits of smoothing backgrounds and radar reflectivity observations for multiscale data assimilation with an ensemble Kalman filter at convective scales: A proof-of-concept study. Mon. Wea. Rev., 150, 589–601, https://doi.org/10.1175/MWR-D-21-0130.1.
|
Spiller, E. T., A. Budhiraja, K. Ide, et al., 2008: Modified particle filter methods for assimilating Lagrangian data into a point-vortex model. Phys. D Nonlinear Phenom., 237, 1498–1506, https://doi.org/10.1016/j.physd.2008.03.023.
|
Stoffelen, A., and D. Anderson, 1997: Scatterometer data interpretation: Measurement space and inversion. J. Atmos. Ocean. Technol., 14, 1298–1313, https://doi.org/10.1175/1520-0426(1997)014<1298:SDIMSA>2.0.CO;2. doi: 10.1175/1520-0426(1997)014<1298:SDIMSA>2.0.CO;2
|
Storto, A., G. De Magistris, S. Falchetti, et al., 2021: A neural network-based observation operator for coupled ocean-acoustic variational data assimilation. Mon. Wea. Rev., 149, 1967–1985, https://doi.org/10.1175/MWR-D-20-0320.1.
|
Sugiura, N., T. Awaji, S. Masuda, et al., 2008: Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J. Geophys. Res. Oceans, 113, C10017, https://doi.org/10.1029/2008JC004741.
|
Sun, J. N., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2. doi: 10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
|
Sun, J. N., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852, https://doi.org/10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2. doi: 10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2
|
Sun, J. Z., Z. Y. Liu, F. Y. Lu, et al., 2020a: Strongly coupled data assimilation using leading averaged coupled covariance (LACC). Part III: Assimilation of real world reanalysis. Mon. Wea. Rev., 148, 2351–2364, https://doi.org/10.1175/MWR-D-19-0304.1.
|
Sun, J. Z., Y. Zhang, J. M. Ban, et al., 2020b: Impact of combined assimilation of radar and rainfall data on short-term heavy rainfall prediction: A case study. Mon. Wea. Rev., 148, 2211–2232, https://doi.org/10.1175/MWR-D-19-0337.1.
|
Sun, J., M. Xue, J. W. Wilson, et al., 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409–426.
|
|
Tang, J., D. Byrne, J. A. Zhang, et al., 2015: Horizontal transition of turbulent cascade in the near-surface layer of tropical cyclones. J. Atmos. Sci., 72, 4915–4925, https://doi.org/10.1175/JAS-D-14-0373.1.
|
|
Temperton, C., and M. Roch, 1991: Implicit normal mode initialization for an operational regional model. Mon. Wea. Rev., 119, 667–677, https://doi.org/10.1175/1520-0493(1991)119<0667:INMIFA>2.0.CO;2. doi: 10.1175/1520-0493(1991)119<0667:INMIFA>2.0.CO;2
|
Thépaut, J.-N., R. N. Hoffman, and P. Courtier, 1993: Interactions of dynamics and observations in a four-dimensional variational assimilation. Mon. Wea. Rev., 121, 3393–3414, https://doi.org/10.1175/1520-0493(1993)121<3393:IODAOI>2.0.CO;2. doi: 10.1175/1520-0493(1993)121<3393:IODAOI>2.0.CO;2
|
Thiébaux, H. J., and M. A. Pedder, 1987: Spatial Objective Analysis. Academic Press, London, 299 pp.
|
|
Tian, X. J., H. Q. Zhang, X. B. Feng, et al., 2018: Nonlinear least squares En4DVar to 4DEnVar methods for data assimilation: Formulation, analysis, and preliminary evaluation. Mon. Wea. Rev., 146, 77–93, https://doi.org/10.1175/MWR-D-17-0050.1.
|
Tian, Y. D., C. D. Peters-Lidard, K. W. Harrison, et al., 2015: An examination of methods for estimating land surface microwave emissivity. J. Geophys. Res. Atmos., 120, 11114–11128, https://doi.org/10.1002/2015JD023582.
|
Tippett, M. K., J. L. Anderson, C. H. Bishop, et al., 2003: Ensemble square root filters. Mon. Wea. Rev., 131, 1485–1490, https://doi.org/10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2. doi: 10.1175/1520-0493(2003)131<1485:ESRF>2.0.CO;2
|
Tong, M. J., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807, https://doi.org/10.1175/MWR2898.1.
|
Uppala, S., A. Hollingsworth, S. Tibaldi, et al., 1984: Results from two recent observing system experiments at ECMWF. Proceedings of ECMWF Seminar on Data Assimilation Systems and Observing System Experiments with Particular Emphasis on FGGE, Reading, UK, 3–7 September, ECMWF, 165–202.
|
|
Wan, Q. L., J. S. Xue, and S. Y. Zhuang, 2005: Study on the variational assimilation technique for the retrieval of wind fields from Doppler radar data. Acta Meteor. Sinica, 63, 129–145, https://doi.org/10.11676/qxxb2005.014. (in Chinese)
|
|
|
Wang, H., and W. Han, 2018: The application of assimilating FY4A AGRI water-vapor channel radiances in GRAPES. Proceedings of the 35th Annual Meeting of Chinese Meteorological Society, S9, Chinese Meteorological Society, Hefei, 1–66. (in Chinese)
|
Wang, H. L., J. Z. Sun, S. Y. Fan, et al., 2013a: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889–902, https://doi.org/10.1175/JAMC-D-12-0120.1.
|
Wang, H. L., J. Z. Sun, X. Zhang, et al., 2013b. Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 2224–2244, https://doi.org/10.1175/MWR-D-12-00168.1.
|
Wang, J. C., Z. R. Zhuang, W. Han, et al., 2014: An improvement of background error covariance in the global GRAPES variational data assimilation and its impact on the analysis and prediction: Statistics of the three-dimensional structure of background error covariance. Acta Meteor. Sinica, 72, 62–78, https://doi.org/10.11676/qxxb2014.008. (in Chinese)
|
Wang, J. C., J. D. Gong, and B. Zhao, 2015: A new method for estimating observation error of the COSMIC refractivity data and its impacts on GRAPES-GFS model weather forecasts. Acta Meteor. Sinica, 73, 142–158, https://doi.org/10.11676/qxxb2015.005. (in Chinese)
|
Wang, J. C., J. D. Gong, and R. C. Wang, 2016: Estimation of background error for brightness temperature in GRAPES 3DVar and its application in radiance data background quality control. Acta Meteor. Sinica, 74, 397–409, https://doi.org/10.11676/qxxb2016.026. (in Chinese)
|
|
Wang, J. C., X. W. Jiang, X. S. Shen, et al., 2023: Assimilation of ocean surface wind data by the HY-2B satellite in GRAPES: Impacts on analyses and forecasts. Adv. Atmos. Sci., 40, 44–61, https://doi.org/10.1007/s00376-022-1349-2.
|
Wang, M. J., K. Zhao, W.-C. Lee, et al., 2018: Microphysical and kinematic structure of convective-scale elements in the inner rainband of Typhoon Matmo (2014) after landfall. J. Geophys. Res. Atmos., 123, 6549–6564, https://doi.org/10.1029/2018JD028578.
|
Wang, P., J. Li, J. L. Li, et al., 2014: Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP. Geophys. Res. Lett., 41, 1773–1780, https://doi.org/10.1002/2013GL059067.
|
Wang, P., J. Li, Z. L. Li, et al., 2017: The impact of cross-track infrared sounder (CrIS) cloud-cleared radiances on hurricane Joaquin (2015) and Matthew (2016) forecasts. J. Geophys. Res. Atmos., 122, 13201–13218, https://doi.org/10.1002/2017JD027515.
|
Wang, R. C., J. D. Gong, and H. Wang, 2021: Impact studies of introducing a large-scale constraint into the kilometer-scale regional variational data assimilation. Chinese J. Atmos. Sci, 45, 1007–1022, https://doi.org/10.3878/j.issn.1006-9895.2009.20176. (in Chinese)
|
Wang, R. C., J. D. Gong, and J. Sun, 2024: A reformulation of the minimization control variables in the CMA-MESO km-scale variational assimilation system. Acta Meteor. Sinica, 82, 208–221, https://doi.org/10.11676/qxxb2024.20230076. (in Chinese)
|
Wang, S, and Z. Liu, 2019: A radar reflectivity operator with ice-phase hydrometeors for variational data assimilation (version 1.0) and its evaluation with real radar data. Geoscientific Model Development, 12, 4031–4051
|
|
Wang, S. Z., and Z. Q. Liu, 2019: A radar reflectivity operator with ice-phase hydrometeors for variational data assimilation (version 1.0) and its evaluation with real radar data. Geosci. Model Dev., 12, 4031–4051, https://doi.org/10.5194/gmd-12-4031-2019.
|
Wang, X. G., and T. Lei, 2014: GSI-based four-dimensional ensemble-variational (4DEnsVar) data assimilation: Formulation and single-resolution experiments with real data for NCEP global forecast system. Mon. Wea. Rev., 142, 3303–3325, https://doi.org/10.1175/MWR-D-13-00303.1.
|
Wang, X. G., C. Snyder, and T. M. Hamill, 2007: On the theoretical equivalence of differently proposed ensemble-3DVAR hybrid analysis schemes. Mon. Wea. Rev., 135, 222–227, https://doi.org/10.1175/MWR3282.1.
|
Wang, X. G., D. M. Barker, C. Snyder, et al., 2008: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 5116–5131, https://doi.org/10.1175/2008MWR2444.1.
|
Wang, X. G., D. Parrish, D. Kleist, et al., 2013: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: Single-resolution experiments. Mon. Wea. Rev., 141, 4098–4117, https://doi.org/10.1175/MWR-D-12-00141.1.
|
Wang, X. G., H. G. Chipilski, C. H. Bishop, et al., 2021: A multiscale local gain form ensemble transform Kalman filter (MLGETKF). Mon. Wea. Rev., 149, 605–622, https://doi.org/10.1175/MWR-D-20-0290.1.
|
Wang, Y. M., and X. G. Wang, 2021: Development of convective-scale static background error covariance within GSI-based hybrid EnVar system for direct radar reflectivity data assimilation. Mon. Wea. Rev., 149, 2713–2736, https://doi.org/10.1175/MWR-D-20-0215.1.
|
Wang, Y. M., and X. G. Wang, 2023: Simultaneous multiscale data assimilation using scale-and variable-dependent localization in EnVar for convection allowing analyses and forecasts: Methodology and experiments for a tornadic supercell. J. Adv. Model. Earth Syst., 15, e2022MS003430, https://doi.org/10.1029/2022MS003430.
|
Wang, Y. Y., X. M. Shi, L. L. Lei, et al., 2022: Deep learning augmented data assimilation: Reconstructing missing information with convolutional autoencoders. Mon. Wea. Rev., 150, 1977–1991, https://doi.org/10.1175/MWR-D-21-0288.1.
|
Weissmann, M., F. Harnisch, C.-C. Wu, et al., 2011: The influence of assimilating dropsonde data on typhoon track and midlatitude forecasts. Mon. Wea. Rev., 139, 908–920, https://doi.org/10.1175/2010MWR3377.1.
|
Wen, J., K. Zhao, H. Huang, et al., 2017: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in eastern China. J. Geophys. Res. Atmos., 122, 8033–8050, https://doi.org/10.1002/2016JD026346.
|
Wen, L., K. Zhao, G. Chen, et al., 2018: Drop size distribution characteristics of seven typhoons in China. J. Geophys. Res. Atmos., 123, 6529–6548, https://doi.org/10.1029/2017JD027950.
|
|
Weng, F. Z., X. W. Yu, Y. H. Duan, et al., 2020: Advanced Radiative Transfer Modeling System (ARMS): A new-generation satellite observation operator developed for numerical weather prediction and remote sensing applications. Adv. Atmos. Sci., 37, 131–136, https://doi.org/10.1007/s00376-019-9170-2.
|
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913–1924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2. doi: 10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2
|
|
Whitaker, J. S., T. M. Hamill, X. Wei, et al., 2008: Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., 136, 463–482, https://doi.org/10.1175/2007MWR2018.1.
|
|
Wu, C.-C., J.-H. Chen, P.-H. Lin, et al., 2007: Targeted observations of tropical cyclone movement based on the adjoint-derived sensitivity steering vector. J. Atmos. Sci., 64, 2611–2626, https://doi.org/10.1175/JAS3974.1.
|
Wu, D., K. Zhao, M. R. Kumjian, et al., 2018: Kinematics and microphysics of convection in the outer rainband of Typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 2147–2159, https://doi.org/10.1175/MWR-D-17-0320.1.
|
Wulfmeyer, V., A. Behrendt, H. S. Bauer, et al., 2008: The convective and orographically induced precipitation study: A research and development project of the world weather research program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 1477–1486, https://doi.org/10.1175/2008BAMS2367.1.
|
Xiao, H. Y., W. Han, H. Wang, et al., 2020: Impact of FY-3D MWRI radiance assimilation in GRAPES 4DVar on forecasts of typhoon Shanshan. J. Meteor. Res., 34, 836–850, https://doi.org/10.1007/s13351-020-9122-x.
|
Xiao, H. Y., W. Han, P. Zhang, et al., 2023a: Assimilation of data from the MWHS-II onboard the first early morning satellite FY-3E into the CMA global 4D-Var system. Meteor. Appl., 30, e2133, https://doi.org/10.1002/met.2133.
|
Xiao, H. Y., J. Li, G. Q. Liu, et al., 2023b: Assimilation of AMSU-a surface-sensitive channels in CMA_GFS 4D-Var system over land. Wea. Forecasting, 38, 1777–1790, https://doi.org/10.1175/WAF-D-23-0032.1.
|
Xiao, Q. N., and J. Z. Sun, 2007: Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 3381–3404, https://doi.org/10.1175/MWR3471.1.
|
Xiao, Q. N., Y.-H. Kuo, J. Z. Sun, et al., 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768–788, https://doi.org/10.1175/JAM2248.1.
|
Xiao, Y., L. Bai, W. Xue, et al., 2024a: FengWu-4DVar: Coupling the data-driven weather forecasting model with 4D variational assimilation. arXiv, 2312.12455, https://doi.org/10.48550/arXiv.2312.12455.
|
Xiao, Y., Q. L. Jia, W. Xue, et al., 2024b: VAE-Var: Variational-autoencoder-enhanced variational assimilation. arXiv, 2405.13711, https://doi.org/10.48550/arXiv.2405.13711.
|
Xie, H, L. Bi, and W. Han, 2024: ZJU-AERO V0. 5: An accurate and efficient radar operator designed for CMA-GFS/MESO with capability of simulating non-spherical hydrometeors. Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024.
|
Xie, H. J., W. Han, and L. Bi, 2023: Assimilating FY3D-MWRI 23.8 GHz observations in the CMA-GFS 4DVAR system based on a pseudo All-Sky data assimilation method. Quart. J. Roy. Meteor. Soc., 149, 3014–3043, https://doi.org/10.1002/qj.4544.
|
Xie, Y., S. Koch, J. McGinley, et al., 2011: A space–time multiscale analysis system: A sequential variational analysis approach. Mon. Wea. Rev., 139, 1224–1240, https://doi.org/10.1175/2010MWR3338.1.
|
Xu, J. M., 2020: Pathways on solving problems at algorithm improvements for FY-2 meteorological satellite at image navigation and wind vector derivation. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.), 12, 1–6. (in Chinese)
|
|
|
Xu, Z. F., J. D. Gong, J. J. Wang, et al., 2007: A study of assimilation of surface observational data in complex terrain Part I: Influence of the elevation difference between model surface and observation site. Chinese J. Atmos. Sci., 31, 222–232, https://doi.org/10.3878/j.issn.1006-9895.2007.02.04. (in Chinese)
|
Xu, Z. F., J. D. Gong, and Z. C. Li, 2009: A study of assimilation of surface observational data in complex terrain Part III: Comparison analysis of two methods on solving the problem of elevation difference between model surface and observation sites. Chinese J. Atmos. Sci., 33, 1137–1147, https://doi.org/10.3878/j.issn.1006-9895.2009.06.02. (in Chinese)
|
|
Xu, Z. F., Y. Wu, J. D. Gong, et al., 2021: Assimilation of 2 m relative humidity observations in CMA-MESO 3DVar system. Acta Meteor. Sinica, 79, 943–955, https://doi.org/10.11676/qxxb2021.060. (in Chinese)
|
|
Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of the Numerical Weather Prediction System GRAPES. Science Press, Beijing, 383 pp. (in Chinese)
|
|
Xue, M., Y. Jung, and G. F. Zhang, 2010: State estimation of convective storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data. Quart. J. Roy. Meteor. Soc., 136, 685–700, https://doi.org/10.1002/qj.593.
|
Yang, J., S. G. Ding, P. M. Dong, et al., 2020: Advanced radiative transfer modeling system developed for satellite data assimilation and remote sensing applications. J. Quant. Spectrosc. Radiat. Transf., 251, 107043, https://doi.org/10.1016/j.jqsrt.2020.107043.
|
Yang, L. C., W. S. Duan, Z. F. Wang, et al., 2022: Toward targeted observations of the meteorological initial state for improving the PM 2.5 forecast of a heavy haze event that occurred in the Beijing–Tianjin–Hebei region. Atmos. Chem. Phys., 22, 11429–11453, https://doi.org/10.5194/acp-22-11429-2022.
|
Yang, L. C., W. S. Duan, and Z. F. Wang, 2023: An approach to refining the ground meteorological observation stations for improving PM 2.5 forecasts in the Beijing–Tianjin–Hebei region. Geosci. Model Dev., 16, 3827–3848, https://doi.org/10.5194/gmd-16-3827-2023.
|
|
|
Yano, J.-I., M. Z. Ziemiański, M. Cullen, et al., 2018: Scientific challenges of convective-scale numerical weather prediction. Bull. Amer. Meteor. Soc., 99, 699–710, https://doi.org/10.1175/BAMS-D-17-0125.1.
|
Yin, R. Y., W. Han, Z. Q. Gao, et al., 2020: The evaluation of FY4A’s Geostationary Interferometric Infrared Sounder (GIIRS) long-wave temperature sounding channels using the GRAPES global 4D-Var. Quart. J. Roy. Meteor. Soc., 146, 1459–1476, https://doi.org/10.1002/qj.3746.
|
Yin, R. Y., W. Han, Z. Q. Gao, et al., 2021: Impact of high temporal resolution FY-4A geostationary interferometric infrared sounder (GIIRS) radiance measurements on typhoon forecasts: Maria (2018) case with GRAPES global 4D-Var assimilation system. Geophys. Res. Lett., 48, e2021GL093672, https://doi.org/10.1029/2021GL093672.
|
Ying, Y., and F. Q. Zhang, 2015: An adaptive covariance relaxation method for ensemble data assimilation. Quart. J. Roy. Meteor. Soc., 141, 2898–2906, https://doi.org/10.1002/qj.2576.
|
Yussouf, N., and D. J. Stensrud, 2010: Impact of phased-array radar observations over a short assimilation period: Observing system simulation experiments using an ensemble Kalman filter. Mon. Wea. Rev., 138, 517–538, https://doi.org/10.1175/2009MWR2925.1.
|
Zeng, Y., 2013: Efficient radar forward operator for operational data assimilation within the COSMO-model. Ph.D. dissertation, Karlsruher Institut für Technologie, Karlsruher, 232 pp, https://doi.org/10.5445/KSP/1000036921.
|
|
Zeng, Y. F., T. Janjić, A. de Lozar, et al., 2020: Comparison of methods accounting for subgrid-scale model error in convective-scale data assimilation. Mon. Wea. Rev., 148, 2457–2477, https://doi.org/10.1175/MWR-D-19-0064.1.
|
|
Zhang, F., C. Snyder, and J. Z. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238–1253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2. doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
|
Zhang, F. Q., Y. H. Weng, J. A. Sippel, et al., 2009a: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105–2125, https://doi.org/10.1175/2009MWR2645.1.
|
|
|
Zhang, J. A., D. S. Nolan, R. F. Rogers, et al., 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 3136–3155, https://doi.org/10.1175/MWR-D-14-00339.1.
|
Zhang, L., Y. Z. Liu, Y. Liu, et al., 2019: The operational global four-dimensional variational data assimilation system at the China Meteorological Administration. Quart. J. Roy. Meteor. Soc., 145, 1882–1896, https://doi.org/10.1002/qj.3533.
|
Zhang, P., X. Q. Hu, Q. F. Lu, et al., 2022: FY-3E: The first operational meteorological satellite mission in an early morning orbit. Adv. Atmos. Sci., 39, 1−8, https://doi.org/10.1007/s00376-021-1304-7.
|
|
Zhang, S., M. J. Harrison, A. Rosati, et al., 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 3541–3564, https://doi.org/10.1175/MWR3466.1.
|
Zhang, X. H., Q. S. Zhang, and J. M. Xu, 2017a: Use of representative pixels of motion for wind vector height assignment of semi-transparent clouds. J. Appl. Meteor. Sci., 28, 270–282, https://doi.org/10.11898/1001-7313.20170302. (in Chinese)
|
Zhang, X. H., Y. H. Duan, Y. Q. Wang, et al., 2017b: A high-resolution simulation of supertyphoon Rammasun (2014)—Part I: Model verification and surface energetics analysis. Adv. Atmos. Sci., 34, 757–770, https://doi.org/10.1007/s00376-017-6255-7.
|
Zhang, Y. J., H. Hu, and F. Z. Weng, 2021: The potential of satellite sounding observations for deriving atmospheric wind in all-weather conditions. Remote Sens., 13, 2947, https://doi.org/10.3390/rs13152947.
|
Zhao, K., M. J. Wang, M. Xue, et al., 2017: Doppler radar analysis of a tornadic miniature supercell during the landfall of Typhoon Mujigae (2015) in South China. Bull. Amer. Meteor. Soc., 98, 1821–1831, https://doi.org/10.1175/BAMS-D-15-00301.1.
|
|
|
Zhen, Y. C., and F. Q. Zhang, 2014: A probabilistic approach to adaptive covariance localization for serial ensemble square-root filters. Mon. Wea. Rev., 142, 4499–4518, https://doi.org/10.1175/MWR-D-13-00390.1.
|
Zheng, H., Y. D. Chen, S. W. Zheng, et al., 2023: Radar reflectivity assimilation based on hydrometeor control variables and its impact on short-term precipitation forecasting. Remote Sens., 15, 672, https://doi.org/10.3390/rs15030672.
|
Zhu, K, Y. Pan, M. Xue, et al., 2013: A regional GSI-based ensemble Kalman filter data assimilation system for the rapid refresh configuration: Testing at reduced resolution. Monthly Weather Review, 141, 4118–4139
|
Zhou, L. F., L. L. Lei, J. S. Whitaker, et al., 2024: An adaptive channel selection method for assimilating the hyperspectral infrared radiances. Mon. Wea. Rev., 152, 793–810, https://doi.org/10.1175/MWR-D-23-0131.1.
|
Zhu, L. J., J. D. Gong, L. P. Huang, et al., 2017: Three-dimensional cloud initial field created and applied to GRAPES numerical weather prediction nowcasting. J. Appl. Meteor. Sci., 28, 38–51, https://doi.org/10.11898/1001-7313.20170104. (in Chinese)
|
Zhu, M. B., P. J. van Leeuwen, and J. Amezcua, 2016: Implicit equal-weights particle filter. Quart. J. Roy. Meteor. Soc., 142, 1904–1919, https://doi.org/10.1002/qj.2784.
|
Zhu, Y. Q., J. Derber, A. Collard, et al., 2014: Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc., 140, 1479–1492, https://doi.org/10.1002/qj.2233.
|
Zhu, Z. Q., F. Z. Weng, and Y. Han, 2024: Vector radiative transfer in a vertically inhomogeneous scattering and emitting atmosphere. Part I: A new discrete ordinate method. J. Meteor. Res., 38, 209–224, https://doi.org/10.1007/s13351-024-3076-3.
|
Zhuang, Z. R., R. C. Wang, and X. L. Li, 2020: Application of global large scale information to GRAEPS RAFS system. Acta Meteor. Sinica, 78, 33–47, https://doi.org/10.11676/qxxb2020.002. (in Chinese)
|
Zou, X. L., 2025: Overview and new opportunities for multi-source data assimilation. J. Meteor. Res., 39(1), 1–25, https://doi.org/10.1007/s13351-025-4140-3.
|
Zupanski, M., 1993: Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment. Mon. Wea. Rev., 121, 2396–2408, https://doi.org/10.1175/1520-0493(1993)121<2396:RFDVDA>2.0.CO;2. doi: 10.1175/1520-0493(1993)121<2396:RFDVDA>2.0.CO;2
|
|