Processing math: 100%

Tropical Cyclone Ocean Winds and Structure Parameters Retrieved from Cross-Polarized SAR Measurements

基于交叉极化星载合成孔径雷达观测资料反演的热带气旋海洋风和结构参数

+ Author Affiliations + Find other works by these authors
Funds: 
Supported by the National Natural Science Foundation of China (42305153), Zhejiang Provincial Natural Science Foundation of China (LQ21D060001 and LZJMZ23D05000), East China Meteorological Science and Technology Collaborative Innovation Foundation Cooperation Project (QYHZ202307), Fengyun Application Pioneering Project (FY-APP-2021.0105), Science and Technology Project of Zhejiang Meteorological Bureau (2021YB07, 2022ZD06, and 2023YB06), Open Project of Key Laboratory of Meteorological Disaster, Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (KLME202408), Open Grants of the State Key Laboratory of Severe Weather (2024LASW-B22), Innovation and Development Project of China Meteorological Administration (CXFZ2022J040), and Youth Innovation Team Fund of China Meteorological Administration (CMA2023QN12).

PDF

  • Spaceborne synthetic aperture radar (SAR) can provide unique capabilities to measure ocean surface winds under tropical cyclones (TCs), on synoptic scales, and at a very high spatial resolution. In this paper, we first discuss the accuracy and reliability of SAR-retrieved TC marine winds. The results show that wind retrievals from SAR images are in good agreement with Stepped Frequency Microwave Radiometer (SFMR) measurements, with root-mean-square error (RMSE) and correlation coefficient (CC) of 3.52 m s−1 and 0.91, respectively. Based on the marine winds retrieved from SAR images, a relatively simple method is applied to extract the storm intensity (maximum wind speed) and wind radii (R34, R50, and R64) from 234 cross-polarized SAR images, in the Northwest Pacific Ocean from 2015 to 2023. The SAR-retrieved TC wind radii and intensities are compared with the best-track reports, with RMSEs for R34, R50, and R64 being 48.32, 41.88, and 38.51 km, and CCs being 0.87, 0.83, and 0.65, respectively. In terms of TC intensity, the RMSE and bias between SAR estimates and best-track data are 7.32 and 0.38 m s−1, respectively. For TC Surigae (2023), we found that employing a combination of multiplatform SARs, acquired within a short time interval, has the potential to simultaneously measure the intensity and wind structure parameters. In addition, for a storm with a long life cycle, the multitemporal synergistic SARs can be used to investigate fine-scale features of the TC ocean winds, as well as the evolution of TC surface wind intensities and wind structures.

    星载合成孔径雷达(SAR)有独特的能力,可以在天气尺度上以非常高的空间分辨率测量热带气旋(TC)的海洋表面风。本文首先讨论了SAR反演TC海风的精度和可靠性。结果表明,SAR图像反演的风与步进频率微波辐射计(SFMR)测量结果吻合较好,均方根误差(RMSE)和相关系数(CC)分别为3.52 m s−1和0.91。基于从SAR图像中获取的海风,采用一种相对简单的方法提取了2015–2023年西北太平洋地区234幅交叉极化SAR图像的风暴强度(最大风速)和风半径(R34、R50和R64 kt)。将SAR反演的TC风半径和强度与最佳路径报告进行比较,R34、R50和R64的RMSE分别为48.32、41.88和38.51 km, CCs分别为0.87、0.83和0.65。在TC强度方面,SAR估计值与最佳航迹数据之间的RMSE和偏差分别为7.32和0.38 m s−1。对于TC Surigae (2023),我们发现使用在短时间间隔内获得的多平台SAR组合,有可能同时测量TC强度和风结构参数。此外,对于长生命周期的TC,多时间协同SAR可以用于研究TC海洋风的精细尺度特征,以及TC地面风强度和风结构的演变。

  • We would like to thank Remote Sensing Systems for providing SMAP and WindSat daily ocean wind products, Center for Satellite Applications and Research (STAR) of NOAA for providing multiplatform synthetic aperture radar (SAR) ocean wind data, NOAA Hurricane Research Division, NOAA Aircraft Operations Center, and the U.S. Air Force Reserve for collecting and maintaining the Stepped Frequency Microwave Radiometer (SFMR) data. The authors are thankful to the Editor and all anonymous reviewers for their help in improving this manuscript.

  • Fig.  11.   SAR storm images of (a) Khanun on 6 August 2023, (b) Bualoi on 20 October 2019, (c) Guchol on 9 June 2023, and (d) Goni on 30 October 2020. Corresponding SAR-retrieved TC ocean winds of (e) Khanun, (f) Bualoi, (g) Guchol, and (h) Goni. Black “+” represents the TC center location from best tracks. Black dots represent the RMW location extracted from SAR winds. Red arcs represent the range for R34 relative to the storm center location, in each of the four quadrants.

    Fig.  1.   Geographic locations of the 234 SAR images of storms in the Northwest Pacific Ocean.

    Fig.  2.   (a) VH-polarized SAR image from C-band RCM for TC Bolaven at 0840 UTC 11 October 2023, as well as (b) the SAR-retrieved ocean surface wind speed. The black circles indicate the locations of maximum wind speed retrieved from SAR.

    Fig.  3.   Ocean surface winds over TC Kongrey measured by (a) S1A SAR image at 2112 UTC, (b) SMAP at 2133 UTC, and (c) WindSat at 2139 UTC 2 October 2023. (d) SAR-retrieved ocean surface winds compared to SMAP- and WindSat-derived wind speeds. The black boxes in panels (b) and (c) show the S1A SAR image related to the SMAP and WindSat images.

    Fig.  4.   Scatter diagrams of SAR-retrieved wind speeds vs radiometer-derived wind speeds. The color bar represents the number of points in each panel.

    Fig.  5.   (a) SAR-retrieved ocean winds from Sentinel-1A VH-polarized SAR images of TC Delta at 0008 UTC 8 October 2020. The black line indicates the flight track for the SFMR measurements. Black cross represents the storm center from best track. (b) Comparison between SAR-derived wind speeds from 16 cross-polarized SAR images and the SFMR-measured wind speeds in the Atlantic Ocean basin. The color bar represents the number of points in each panel.

    Fig.  6.   Super Typhoon Surigae’s track and 10 SAR images that captured the storm’s eye.

    Fig.  7.   Time series of best-track TC intensity (black line) for Typhoon Surigae from 15 to 25 April. Blue dots represent SAR-estimated storm intensity.

    Fig.  8.   SAR-retrieved ocean winds and estimated wind radii (R34, R50, and R64) for Surigae. The black, purple, and red arcs represent the range for R34, R50, and R64, relative to the storm center location, in each of the four quadrants. The black “+” represents the TC center locations from best-track reports. The black circles indicate the locations of storm intensity (maximum wind speed) retrieved from SARs.

    Fig.  9.   Time series of (a) SAR-estimated R34, (b) best-track R34, (c) SAR-estimated R50, (d) best-track R50, (e) SAR-estimated R64, and (f) best-track R64. Green solid dots represent the northeast quadrant, blue solid squares represent the southeast quadrant, red solid rhombus symbols represent the southwest quadrant, and pink pentagons represent the southwest quadrant. The black polyline in each panel represents the average data. The black lines indicate linear regression fits for the averaged data.

    Fig.  10.   Scatterplots of TC wind radii (R34, R50, and R64) and intensities between SAR and best-track data. The colorbar indicates the number of data points in the specific bins. The bin size is (a–c) 50 km × 50 km and (d) 3 m s−1 × 3 m s−1. Each colored point is located at the center of the bin.

    Fig.  12.   Comparison of SAR-estimated TC values and (a) SAR-retrieved storm intensities, (b) the intensities from best-track reports. Red curves are fitted by power functions.

    Table  1   Multiplatform SAR sensors and their parameters

    Sensor Mode Resolution (m) Swath width (km) Polarization option TC sample
    S1A/B Interferometric wide swath 20 250 VV + VH 79
    RS2 ScanSAR wide 100 500 VV + VH
    HH + HV
    63
    RCM Medium resolution 50 350 HH + HV 92
    Download: Download as CSV

    Table  2   Coefficient values for the MS1A GMF

    θ A1 a1 Ut1 a2 Ut2 a3 Ut3 a4 Ut4 a5
    20.00 11.5e−05 0.99 9.00 2.35 12.00 2.11 14.00 1.72 35.00 0.39
    22.50 23.3e−05 0.66 8.60 2.10 14.75 2.46 15.00 1.38 42.00 1.05
    25.00 7.18e−05 1.18 9.00 2.21 3.00 1.95 15.00 1.52 35.25 1.14
    27.50 5.33e−05 1.30 8.50 2.06 14.00 1.87 15.00 1.51 39.00 1.08
    30.00 10.0e−05 0.96 7.50 1.74 14.00 2.29 16.00 1.53 37.00 1.00
    32.50 2.79e−05 1.50 10.00 2.05 15.00 2.42 18.00 1.50 34.00 0.97
    35.00 2.06e−05 1.57 8.00 2.18 10.50 2.17 15.50 1.77 30.00 1.04
    40.00 1.08e−05 1.80 8.50 2.38 13.50 2.08 18.00 1.59 31.00 1.32
    45.00 5.79e−06 1.97 6.40 2.40 14.00 1.92 31.00 2.13 32.00 1.35
    Download: Download as CSV

    Table  3   TC structure parameters retrieved from SAR images

    TCTime
    (UTC)
    SatelliteRMW
    (km)
    R34
    (km)
    Intensity
    (m s−1)
    TCFCategory
    Khanun2023-08-06
    21:19:34
    RCM18522032.80.16FS1
    Bualoi2019-10-20
    08:15:02
    RS25510335.70.46FS2
    Guchol2023-06-09
    21:06:48
    RCM4818939.80.75FS3
    Goni2020-10-30
    09:26:42
    S1A79368.90.93FS4
    Download: Download as CSV
  • Alpers, W., B. Zhang, A. Mouche, et al., 2016: Rain footprints on C-band synthetic aperture radar images of the ocean—Revisited. Remote Sens. Environ., 187, 169–185, doi: 10.1016/j.rse.2016.10.015.
    Carrasco, C. A., C. W. Landsea, and Y.-L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582–590, doi: 10.1175/WAF-D-13-00092.1.
    Chan, K. T. F., and J. C. L. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811–824, doi: 10.1175/MWR-D-10-05062.1.
    Combot, C., A. Mouche, J. Knaff, et al., 2020: Extensive high-resolution synthetic aperture radar (SAR) data analysis of tropical cyclones: Comparisons with SFMR flights and best track. Mon. Wea. Rev., 148, 4545–4563, doi: 10.1175/MWR-D-20-0005.1.
    Corcione, V., F. Nunziata, and M. Migliaccio, 2018: Megi typhoon monitoring by X-band synthetic aperture radar measurements. IEEE J. Oceanic Eng., 43, 184–194, doi: 10.1109/JOE.2017.2700558.
    Corcione, V., G. Grieco, M. Portabella, et al., 2019: A novel azimuth cutoff implementation to retrieve sea surface wind speed from SAR imagery. IEEE Trans. Geosci. Remote Sens., 57, 3331–3340, doi: 10.1109/TGRS.2018.2883364.
    Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430, doi: 10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.
    Fang, H., T. Xie, W. Perrie, et al., 2018: Comparison of C-band quad-polarization synthetic aperture radar wind retrieval models. Remote Sens., 10, 1448, doi: 10.3390/rs10091448.
    Fang, H., W. Perrie, G. F. Fan, et al., 2021: Ocean surface wind speed retrieval from C-band quad-polarized SAR measurements at optimal spatial resolution. Remote Sens. Lett., 12, 103–112, doi: 10.1080/2150704X.2020.1846220.
    Fang, H., W. Perrie, G. F. Fan, et al., 2022: High-resolution sea surface wind speeds of Super Typhoon Lekima (2019) retrieved by Gaofen-3 SAR. Front. Earth Sci., 16, 90–98, doi: 10.1007/s11707-021-0887-8.
    Fore, A. G., S. H. Yueh, B. W. Stiles, et al., 2018: SMAP radiometer-only tropical cyclone intensity and size validation. IEEE Geosci. Remote Sens. Lett., 15, 1480–1484, doi: 10.1109/LGRS.2018.2849649.
    Gao, Y., J. Zhang, J. Sun, et al., 2021: Application of SAR data for tropical cyclone intensity parameters retrieval and symmetric wind field model development. Remote Sens., 13, 2902, doi: 10.3390/rs13152902.
    Guo, X., and Z.-M. Tan, 2017: Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys. Res. Lett., 44, 4324–4331, doi: 10.1002/2017GL073680.
    Hon, K.-K., and P. W. Chan, 2022: A decade (2011–2020) of tropical cyclone reconnaissance flights over the South China Sea. Weather, 77, 308–314, doi: 10.1002/wea.4154.
    Horstmann, J., S. Falchetti, C. Wackerman, et al., 2015: Tropical cyclone winds retrieved from C-band cross-polarized synthetic aperture radar. IEEE Trans. Geosci. Remote Sens., 53, 2887–2898, doi: 10.1109/TGRS.2014.2366433.
    Jin, S. H., X. F. Li, X. F. Yang, et al., 2019: Identification of tropical cyclone centers in SAR imagery based on template matching and particle swarm optimization algorithms. IEEE Trans. Geosci. Remote Sens., 57, 598–608, doi: 10.1109/TGRS.2018.2863259.
    Kim, M., M.-S. Park, J. Im, et al., 2019: Machine learning approaches for detecting tropical cyclone formation using satellite data. Remote Sens., 11, 1195, doi: 10.3390/rs11101195.
    Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31 , 2392–2408, doi: 10.1175/JTECH-D-14-00028.1.
    Klotz, B. W., and D. S. Nolan, 2019: SFMR surface wind undersampling over the tropical cyclone life cycle. Mon. Wea. Rev., 147, 247–268, doi: 10.1175/MWR-D-18-0296.1.
    Knaff, J. A., C. R. Sampson, M. E. Kucas, et al., 2021: Estimating tropical cyclone surface winds: Current status, emerging technologies, historical evolution, and a look to the future. Trop. Cyclone Res. Rev., 10, 125–150, doi: 10.1016/j.tcrr.2021.09.002.
    Knapp, K. R., M. C. Kruk, D. H. Levinson, et al., 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363–376, doi: 10.1175/2009BAMS2755.1.
    Kossin, J. P., J. A. Knaff, H. I. Berger, et al., 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89–101, doi: 10.1175/WAF985.1.
    Kudryavtsev, V., D. Hauser, G. Caudal, et al., 2003: A semiempirical model of the normalized radar cross-section of the sea surface 1. Background model. J. Geophys. Res. Oceans, 108, 8054, doi: 10.1029/2001jc001003.
    Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 3576–3592, doi: 10.1175/MWR-D-12-00254.1.
    Li, X. F., J. A. Zhang, X. F. Yang, et al., 2013: Tropical cyclone morphology from spaceborne synthetic aperture radar. Bull. Amer. Meteor. Soc., 94, 215–230, doi: 10.1175/BAMS-D-11-00211.1.
    Liu, S. Q., W. M. Lin, M. Portabella, et al., 2022: Characterization of tropical cyclone intensity using the HY-2B scatterometer wind data. Remote Sens., 14, 1035, doi: 10.3390/rs14041035.
    Lu, X. Q., H. Yu, and X. T. Lei, 2011: Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteor. Sinica, 25, 104–112, doi: 10.1007/s13351-011-0008-9.
    Lv, L. T., Y. M. Zhang, Y. H. Wang, et al., 2022: Development of a new tropical cyclone strip segment retrieval model for C-band cross-polarized SAR data. Remote Sens., 14, 1637, doi: 10.3390/rs14071637.
    Manaster, A., L. Ricciardulli, and T. Meissner, 2021: Tropical cyclone winds from WindSat, AMSR2, and SMAP: Comparison with the HWRF model. Remote Sens., 13, 2347, doi: 10.3390/rs13122347.
    Mayers, D., and C. Ruf, 2019: Tropical cyclone center fix using CYGNSS winds. J. Appl. Meteor. Climatol., 58, 1993–2003, doi: 10.1175/JAMC-D-19-0054.1.
    Meissner, T., L. Ricciardulli, and F. J. Wentz, 2017: Capability of the SMAP mission to measure ocean surface winds in storms. Bull. Amer. Meteor. Soc., 98, 1660–1677, doi: 10.1175/BAMS-D-16-0052.1.
    Migliaccio, M., L. Q. Huang, and A. Buono, 2019: SAR speckle dependence on ocean surface wind field. IEEE Trans. Geosci. Remote Sens., 57, 5447–5455, doi: 10.1109/TGRS.2019.2899491.
    Mouche, A., B. Chapron, J. Knaff, et al., 2019: Copolarized and cross-polarized SAR measurements for high-resolution description of major hurricane wind structures: Application to Irma category 5 hurricane. J. Geophys. Res. Oceans, 124, 3905–3922, doi: 10.1029/2019JC015056.
    Mouche, A. A., B. Chapron, B. Zhang, et al., 2017: Combined co- and cross-polarized SAR measurements under extreme wind conditions. IEEE Trans. Geosci. Remote Sens., 55, 6746–6755, doi: 10.1109/TGRS.2017.2732508.
    Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287–298, doi: 10.1175/WAF975.1.
    Olander, T. L., and C. S. Velden, 2019: The advanced Dvorak technique (ADT) for estimating tropical cyclone intensity: Update and new capabilities. Wea. Forecasting, 34, 905–922, doi: 10.1175/WAF-D-19-0007.1.
    Reppucci, A., S. Lehner, J. Schulz-Stellenfleth, et al., 2010: Tropical cyclone intensity estimated from wide-swath SAR images. IEEE Trans. Geosci. Remote Sens., 48, 1639–1649, doi: 10.1109/TGRS.2009.2037143.
    Reul, N., J. Tenerelli, B. Chapron, et al., 2012: SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes. J. Geophys. Res. Oceans, 117, C02006, doi: 10.1029/2011JC007474.
    Ribal, A., A. Tamizi, and I. R. Young, 2021: Calibration of scatterometer wind speed under hurricane conditions. J. Atmos. Oceanic Technol., 38, 1859–1870, doi: 10.1175/JTECH-D-21-0055.1.
    Shao, W. Z., Z. Z. Lai, F. Nunziata, et al., 2022: Wind field retrieval with rain correction from dual-polarized Sentinel-1 SAR imagery collected during tropical cyclones. Remote Sens., 14, 5006, doi: 10.3390/rs14195006.
    Sun, Z. Y., L. N. Bai, X. S. Zhu, et al., 2023: The extraordinarily large vortex structure of Typhoon In-fa (2021), observed by spaceborne microwave radiometer and synthetic aperture radar. Atmos. Res., 292, 106837, doi: 10.1016/j.atmosres.2023.106837.
    Tamizi, A., I. R. Young, A. Ribal, et al., 2020: Global scatterometer observations of the structure of tropical cyclone wind fields. Mon. Wea. Rev., 148, 4673–4692, doi: 10.1175/MWR-D-20-0196.1.
    Uhlhorn, E. W., P. G. Black, J. L. Franklin, et al., 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135 , 3070–3085, doi: 10.1175/MWR3454.1.
    Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, et al., 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon. Wea. Rev., 142, 1290–1311, doi: 10.1175/MWR-D-13-00249.1.
    Vachon, P. W., and F. W. Dobson, 1996: Validation of wind vector retrieval from ERS-1 SAR images over the ocean. Global Atmos. Ocean Syst., 5, 177–187.
    Vachon, P. W., and F. W. Dobson, 2000: Wind retrieval from RADARSAT SAR images: Selection of a suitable C-band HH polarization wind retrieval model. Can. J. Remote Sens., 26, 306–313, doi: 10.1080/07038992.2000.10874781.
    Velden, C. S., T. L. Olander, and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13, 172–186, doi: 10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2.
    Wang, H., J. H. Zhu, M. S. Lin, et al., 2020: Evaluating Chinese HY-2B HSCAT ocean wind products using buoys and other scatterometers. IEEE Geosci. Remote Sens. Lett., 17, 923–927, doi: 10.1109/LGRS.2019.2940384.
    Young, I. R., E. Kirezci, and A. Ribal, 2020: The global wind resource observed by scatterometer. Remote Sens., 12, 2920, doi: 10.3390/RS12182920.
    Zecchetto, S., and F. De Biasio, 2008: A wavelet-based technique for sea wind extraction from SAR images. IEEE Trans. Geosci. Remote Sens., 46, 2983–2989, doi: 10.1109/TGRS.2008.920967.
    Zhang, G. S., and W. Perrie, 2018: Effects of asymmetric secondary eyewall on tropical cyclone evolution in Hurricane Ike (2008). Geophys. Res. Lett., 45, 1676–1683, doi: 10.1002/2017GL076988.
    Zhang, G. S., X. F. Li, W. Perrie, et al., 2017: A hurricane wind speed retrieval model for C-band RADARSAT-2 cross-polarization ScanSAR images. IEEE Trans. Geosci. Remote Sens., 55, 4766–4774, doi: 10.1109/TGRS.2017.2699622.
    Zhang, G. S., W. Perrie, B. Zhang, et al., 2020: Monitoring of tropical cyclone structures in ten years of RADARSAT-2 SAR images. Remote Sens. Environ., 236, 111449, doi: 10.1016/j.rse.2019.111449.
    Zhang, G. S., C. Xu, X. F. Li, et al., 2022: Tropical cyclone center and symmetric structure estimating from SMAP data. IEEE Trans. Geosci. Remote Sens., 60, 4205311, doi: 10.1109/TGRS.2021.3131004.
    Zhang, K. Y., X. Z. Xu, B. Han, et al., 2017: The influence of different spatial resolutions on the retrieval accuracy of sea surface wind speed with C-2PO models using full polarization C-band SAR. IEEE Trans. Geosci. Remote Sens., 55, 5015–5025, doi: 10.1109/TGRS.2017.2700942.
    Zhao, K., C. F. Zhao, and G. Chen, 2021: Evaluation of Chinese scatterometer ocean surface wind data: Preliminary analysis. Earth Space Sci., 8, e2020EA001482, doi: 10.1029/2020EA001482.
    Zhou, X., X. F. Yang, Z. W. Li, et al., 2013: Estimation of tropical cyclone parameters and wind fields from SAR images. Sci. China Earth Sci., 56, 1977–1987, doi: 10.1007/s11430-013-4633-2.
  • Related Articles

  • Other Related Supplements

  • Cited by

    Periodical cited type(18)

    1. Muhammad Waqas, Usa Wannasingha Humphries, Phyo Thandar Hlaing, et al. Seasonal WaveNet-LSTM: A Deep Learning Framework for Precipitation Forecasting with Integrated Large Scale Climate Drivers. Water, 2024, 16(22): 3194. DOI:10.3390/w16223194
    2. Shuping Li, Guolin Feng, Pengcheng Yan, et al. Relationship between Summer Synoptic Circulation Patterns and Extreme Precipitation in Northern China. Atmosphere, 2023, 14(12): 1705. DOI:10.3390/atmos14121705
    3. Muyuan Li, Jinfeng Yao, Yanbo Shen, et al. Impact of synoptic circulation patterns on renewable energy-related variables over China. Renewable Energy, 2023, 215: 118875. DOI:10.1016/j.renene.2023.05.133
    4. Huidi Yang, Jian Rao, Haohan Chen, et al. Lagged Linkage between the Kara–Barents Sea Ice and Early Summer Rainfall in Eastern China in Chinese CMIP6 Models. Remote Sensing, 2023, 15(8): 2111. DOI:10.3390/rs15082111
    5. Shuping Li, Tao Su, Pengcheng Yan, et al. The role of SST forcing in the interdecadal variations of the Pacific‐Japan pattern in the late 1990s. International Journal of Climatology, 2023, 43(3): 1514. DOI:10.1002/joc.7930
    6. Shibo Yao, Xianmei Lang, Dong Si, et al. Moisture sources of summer heavy precipitation in two spatial patterns over Northeast China during 1979–2021. Atmospheric Science Letters, 2023, 24(11) DOI:10.1002/asl.1181
    7. Kuo Wang, Zhihang Xu, Gaofeng Fan, et al. A Comprehensive Evaluation Model for Local Summer Climate Suitability under Global Warming: A Case Study in Zhejiang Province. Atmosphere, 2022, 13(7): 1075. DOI:10.3390/atmos13071075
    8. Weixing Zhao, Jieming Chou, Jiangnan Li, et al. Impacts of Extreme Climate Events on Future Rice Yields in Global Major Rice-Producing Regions. International Journal of Environmental Research and Public Health, 2022, 19(8): 4437. DOI:10.3390/ijerph19084437
    9. Yushan Zhang, Kun Wu, Jinglin Zhang, et al. Estimating Rainfall with Multi-Resource Data over East Asia Based on Machine Learning. Remote Sensing, 2021, 13(16): 3332. DOI:10.3390/rs13163332
    10. S Swetha, Jasti S Chowdary, Anant Parekh, et al. Decadal prediction skill for spring and summer surface air-temperature over India and its association with SST patterns in CFSv2 and CNRM coupled models. Journal of Earth System Science, 2021, 130(1) DOI:10.1007/s12040-021-01563-9
    11. Haixia Dai, Ke Fan. An effective downscaling model for operational prediction of summer precipitation over China. Atmospheric Research, 2021, 257: 105621. DOI:10.1016/j.atmosres.2021.105621
    12. Xiaoqing Ma, Zhicong Yin. Dipole pattern of summer ozone pollution in the east of China and its connection with climate variability. Atmospheric Chemistry and Physics, 2021, 21(21): 16349. DOI:10.5194/acp-21-16349-2021
    13. Siyuan Sun, Zhaoyong Guan, Dechao Ye. Summer Regional Daily‐Precipitation Extreme Events in Huang‐Huai Rivers Region of China and Their Relationships With Rossby Wave Packet Activities. Journal of Geophysical Research: Atmospheres, 2021, 126(7) DOI:10.1029/2020JD034065
    14. Bingjun Liu, Xuezhi Tan, Thian Y. Gan, et al. Global atmospheric moisture transport associated with precipitation extremes: Mechanisms and climate change impacts. WIREs Water, 2020, 7(2) DOI:10.1002/wat2.1412
    15. O. P. Osipova, E. Yu. Osipov. Atmospheric Circulation Processes and Precipitation Regime in the Northern Part of the Baikal Mountain Region. Russian Meteorology and Hydrology, 2019, 44(10): 695. DOI:10.3103/S106837391910008X
    16. Yeon-Woo Choi, Joong-Bae Ahn. Possible mechanisms for the coupling between late spring sea surface temperature anomalies over tropical Atlantic and East Asian summer monsoon. Climate Dynamics, 2019, 53(11): 6995. DOI:10.1007/s00382-019-04970-3
    17. Shiling Chen, Bingjun Liu, Xuezhi Tan, et al. Characteristics and circulation background of extreme precipitation over East China. Natural Hazards, 2019, 99(1): 537. DOI:10.1007/s11069-019-03758-2
    18. Shuping Li, Wei Hou, Guolin Feng. Corrigendum. Journal of Meteorological Research, 2018, 32(4): 670. DOI:10.1007/s13351-018-8777-z

    Other cited types(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return