Alpers, W., B. Zhang, A. Mouche, et al., 2016: Rain footprints on C-band synthetic aperture radar images of the ocean—Revisited. Remote Sens. Environ., 187, 169–185, doi: 10.1016/j.rse.2016.10.015.
|
Carrasco, C. A., C. W. Landsea, and Y.-L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582–590, doi: 10.1175/WAF-D-13-00092.1.
|
Chan, K. T. F., and J. C. L. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811–824, doi: 10.1175/MWR-D-10-05062.1.
|
Combot, C., A. Mouche, J. Knaff, et al., 2020: Extensive high-resolution synthetic aperture radar (SAR) data analysis of tropical cyclones: Comparisons with SFMR flights and best track. Mon. Wea. Rev., 148, 4545–4563, doi: 10.1175/MWR-D-20-0005.1.
|
Corcione, V., F. Nunziata, and M. Migliaccio, 2018: Megi typhoon monitoring by X-band synthetic aperture radar measurements. IEEE J. Oceanic Eng., 43, 184–194, doi: 10.1109/JOE.2017.2700558.
|
Corcione, V., G. Grieco, M. Portabella, et al., 2019: A novel azimuth cutoff implementation to retrieve sea surface wind speed from SAR imagery. IEEE Trans. Geosci. Remote Sens., 57, 3331–3340, doi: 10.1109/TGRS.2018.2883364.
|
Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420–430, doi: 10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.
|
Fang, H., T. Xie, W. Perrie, et al., 2018: Comparison of C-band quad-polarization synthetic aperture radar wind retrieval models. Remote Sens., 10, 1448, doi: 10.3390/rs10091448.
|
Fang, H., W. Perrie, G. F. Fan, et al., 2021: Ocean surface wind speed retrieval from C-band quad-polarized SAR measurements at optimal spatial resolution. Remote Sens. Lett., 12, 103–112, doi: 10.1080/2150704X.2020.1846220.
|
Fang, H., W. Perrie, G. F. Fan, et al., 2022: High-resolution sea surface wind speeds of Super Typhoon Lekima (2019) retrieved by Gaofen-3 SAR. Front. Earth Sci., 16, 90–98, doi: 10.1007/s11707-021-0887-8.
|
Fore, A. G., S. H. Yueh, B. W. Stiles, et al., 2018: SMAP radiometer-only tropical cyclone intensity and size validation. IEEE Geosci. Remote Sens. Lett., 15, 1480–1484, doi: 10.1109/LGRS.2018.2849649.
|
Gao, Y., J. Zhang, J. Sun, et al., 2021: Application of SAR data for tropical cyclone intensity parameters retrieval and symmetric wind field model development. Remote Sens., 13, 2902, doi: 10.3390/rs13152902.
|
Guo, X., and Z.-M. Tan, 2017: Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys. Res. Lett., 44, 4324–4331, doi: 10.1002/2017GL073680.
|
Hon, K.-K., and P. W. Chan, 2022: A decade (2011–2020) of tropical cyclone reconnaissance flights over the South China Sea. Weather, 77, 308–314, doi: 10.1002/wea.4154.
|
Horstmann, J., S. Falchetti, C. Wackerman, et al., 2015: Tropical cyclone winds retrieved from C-band cross-polarized synthetic aperture radar. IEEE Trans. Geosci. Remote Sens., 53, 2887–2898, doi: 10.1109/TGRS.2014.2366433.
|
Jin, S. H., X. F. Li, X. F. Yang, et al., 2019: Identification of tropical cyclone centers in SAR imagery based on template matching and particle swarm optimization algorithms. IEEE Trans. Geosci. Remote Sens., 57, 598–608, doi: 10.1109/TGRS.2018.2863259.
|
Kim, M., M.-S. Park, J. Im, et al., 2019: Machine learning approaches for detecting tropical cyclone formation using satellite data. Remote Sens., 11, 1195, doi: 10.3390/rs11101195.
|
Klotz, B. W., and E. W. Uhlhorn, 2014: Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31 , 2392–2408, doi: 10.1175/JTECH-D-14-00028.1.
|
Klotz, B. W., and D. S. Nolan, 2019: SFMR surface wind undersampling over the tropical cyclone life cycle. Mon. Wea. Rev., 147, 247–268, doi: 10.1175/MWR-D-18-0296.1.
|
Knaff, J. A., C. R. Sampson, M. E. Kucas, et al., 2021: Estimating tropical cyclone surface winds: Current status, emerging technologies, historical evolution, and a look to the future. Trop. Cyclone Res. Rev., 10, 125–150, doi: 10.1016/j.tcrr.2021.09.002.
|
Knapp, K. R., M. C. Kruk, D. H. Levinson, et al., 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363–376, doi: 10.1175/2009BAMS2755.1.
|
Kossin, J. P., J. A. Knaff, H. I. Berger, et al., 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89–101, doi: 10.1175/WAF985.1.
|
Kudryavtsev, V., D. Hauser, G. Caudal, et al., 2003: A semiempirical model of the normalized radar cross-section of the sea surface 1. Background model. J. Geophys. Res. Oceans, 108, 8054, doi: 10.1029/2001jc001003.
|
Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 3576–3592, doi: 10.1175/MWR-D-12-00254.1.
|
Li, X. F., J. A. Zhang, X. F. Yang, et al., 2013: Tropical cyclone morphology from spaceborne synthetic aperture radar. Bull. Amer. Meteor. Soc., 94, 215–230, doi: 10.1175/BAMS-D-11-00211.1.
|
Liu, S. Q., W. M. Lin, M. Portabella, et al., 2022: Characterization of tropical cyclone intensity using the HY-2B scatterometer wind data. Remote Sens., 14, 1035, doi: 10.3390/rs14041035.
|
Lu, X. Q., H. Yu, and X. T. Lei, 2011: Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteor. Sinica, 25, 104–112, doi: 10.1007/s13351-011-0008-9.
|
Lv, L. T., Y. M. Zhang, Y. H. Wang, et al., 2022: Development of a new tropical cyclone strip segment retrieval model for C-band cross-polarized SAR data. Remote Sens., 14, 1637, doi: 10.3390/rs14071637.
|
Manaster, A., L. Ricciardulli, and T. Meissner, 2021: Tropical cyclone winds from WindSat, AMSR2, and SMAP: Comparison with the HWRF model. Remote Sens., 13, 2347, doi: 10.3390/rs13122347.
|
Mayers, D., and C. Ruf, 2019: Tropical cyclone center fix using CYGNSS winds. J. Appl. Meteor. Climatol., 58, 1993–2003, doi: 10.1175/JAMC-D-19-0054.1.
|
Meissner, T., L. Ricciardulli, and F. J. Wentz, 2017: Capability of the SMAP mission to measure ocean surface winds in storms. Bull. Amer. Meteor. Soc., 98, 1660–1677, doi: 10.1175/BAMS-D-16-0052.1.
|
Migliaccio, M., L. Q. Huang, and A. Buono, 2019: SAR speckle dependence on ocean surface wind field. IEEE Trans. Geosci. Remote Sens., 57, 5447–5455, doi: 10.1109/TGRS.2019.2899491.
|
Mouche, A., B. Chapron, J. Knaff, et al., 2019: Copolarized and cross-polarized SAR measurements for high-resolution description of major hurricane wind structures: Application to Irma category 5 hurricane. J. Geophys. Res. Oceans, 124, 3905–3922, doi: 10.1029/2019JC015056.
|
Mouche, A. A., B. Chapron, B. Zhang, et al., 2017: Combined co- and cross-polarized SAR measurements under extreme wind conditions. IEEE Trans. Geosci. Remote Sens., 55, 6746–6755, doi: 10.1109/TGRS.2017.2732508.
|
Olander, T. L., and C. S. Velden, 2007: The advanced Dvorak technique: Continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Wea. Forecasting, 22, 287–298, doi: 10.1175/WAF975.1.
|
Olander, T. L., and C. S. Velden, 2019: The advanced Dvorak technique (ADT) for estimating tropical cyclone intensity: Update and new capabilities. Wea. Forecasting, 34, 905–922, doi: 10.1175/WAF-D-19-0007.1.
|
Reppucci, A., S. Lehner, J. Schulz-Stellenfleth, et al., 2010: Tropical cyclone intensity estimated from wide-swath SAR images. IEEE Trans. Geosci. Remote Sens., 48, 1639–1649, doi: 10.1109/TGRS.2009.2037143.
|
Reul, N., J. Tenerelli, B. Chapron, et al., 2012: SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes. J. Geophys. Res. Oceans, 117, C02006, doi: 10.1029/2011JC007474.
|
Ribal, A., A. Tamizi, and I. R. Young, 2021: Calibration of scatterometer wind speed under hurricane conditions. J. Atmos. Oceanic Technol., 38, 1859–1870, doi: 10.1175/JTECH-D-21-0055.1.
|
Shao, W. Z., Z. Z. Lai, F. Nunziata, et al., 2022: Wind field retrieval with rain correction from dual-polarized Sentinel-1 SAR imagery collected during tropical cyclones. Remote Sens., 14, 5006, doi: 10.3390/rs14195006.
|
Sun, Z. Y., L. N. Bai, X. S. Zhu, et al., 2023: The extraordinarily large vortex structure of Typhoon In-fa (2021), observed by spaceborne microwave radiometer and synthetic aperture radar. Atmos. Res., 292, 106837, doi: 10.1016/j.atmosres.2023.106837.
|
Tamizi, A., I. R. Young, A. Ribal, et al., 2020: Global scatterometer observations of the structure of tropical cyclone wind fields. Mon. Wea. Rev., 148, 4673–4692, doi: 10.1175/MWR-D-20-0196.1.
|
Uhlhorn, E. W., P. G. Black, J. L. Franklin, et al., 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135 , 3070–3085, doi: 10.1175/MWR3454.1.
|
Uhlhorn, E. W., B. W. Klotz, T. Vukicevic, et al., 2014: Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon. Wea. Rev., 142, 1290–1311, doi: 10.1175/MWR-D-13-00249.1.
|
Vachon, P. W., and F. W. Dobson, 1996: Validation of wind vector retrieval from ERS-1 SAR images over the ocean. Global Atmos. Ocean Syst., 5, 177–187.
|
Vachon, P. W., and F. W. Dobson, 2000: Wind retrieval from RADARSAT SAR images: Selection of a suitable C-band HH polarization wind retrieval model. Can. J. Remote Sens., 26, 306–313, doi: 10.1080/07038992.2000.10874781.
|
Velden, C. S., T. L. Olander, and R. M. Zehr, 1998: Development of an objective scheme to estimate tropical cyclone intensity from digital geostationary satellite infrared imagery. Wea. Forecasting, 13, 172–186, doi: 10.1175/1520-0434(1998)013<0172:DOAOST>2.0.CO;2.
|
Wang, H., J. H. Zhu, M. S. Lin, et al., 2020: Evaluating Chinese HY-2B HSCAT ocean wind products using buoys and other scatterometers. IEEE Geosci. Remote Sens. Lett., 17, 923–927, doi: 10.1109/LGRS.2019.2940384.
|
Young, I. R., E. Kirezci, and A. Ribal, 2020: The global wind resource observed by scatterometer. Remote Sens., 12, 2920, doi: 10.3390/RS12182920.
|
Zecchetto, S., and F. De Biasio, 2008: A wavelet-based technique for sea wind extraction from SAR images. IEEE Trans. Geosci. Remote Sens., 46, 2983–2989, doi: 10.1109/TGRS.2008.920967.
|
Zhang, G. S., and W. Perrie, 2018: Effects of asymmetric secondary eyewall on tropical cyclone evolution in Hurricane Ike (2008). Geophys. Res. Lett., 45, 1676–1683, doi: 10.1002/2017GL076988.
|
Zhang, G. S., X. F. Li, W. Perrie, et al., 2017: A hurricane wind speed retrieval model for C-band RADARSAT-2 cross-polarization ScanSAR images. IEEE Trans. Geosci. Remote Sens., 55, 4766–4774, doi: 10.1109/TGRS.2017.2699622.
|
Zhang, G. S., W. Perrie, B. Zhang, et al., 2020: Monitoring of tropical cyclone structures in ten years of RADARSAT-2 SAR images. Remote Sens. Environ., 236, 111449, doi: 10.1016/j.rse.2019.111449.
|
Zhang, G. S., C. Xu, X. F. Li, et al., 2022: Tropical cyclone center and symmetric structure estimating from SMAP data. IEEE Trans. Geosci. Remote Sens., 60, 4205311, doi: 10.1109/TGRS.2021.3131004.
|
Zhang, K. Y., X. Z. Xu, B. Han, et al., 2017: The influence of different spatial resolutions on the retrieval accuracy of sea surface wind speed with C-2PO models using full polarization C-band SAR. IEEE Trans. Geosci. Remote Sens., 55, 5015–5025, doi: 10.1109/TGRS.2017.2700942.
|
Zhao, K., C. F. Zhao, and G. Chen, 2021: Evaluation of Chinese scatterometer ocean surface wind data: Preliminary analysis. Earth Space Sci., 8, e2020EA001482, doi: 10.1029/2020EA001482.
|
Zhou, X., X. F. Yang, Z. W. Li, et al., 2013: Estimation of tropical cyclone parameters and wind fields from SAR images. Sci. China Earth Sci., 56, 1977–1987, doi: 10.1007/s11430-013-4633-2.
|