Barnet, C. D., J. M. Blaisdell, and J. Susskind, 2000: Practical methods for rapid and accurate computation of interferometric spectra for remote sensing applications. IEEE Trans. Geosci. Remote Sens., 38, 169–183, doi: 10.1109/36.823910.
|
Chen, Y., Y. Han, P. van Delst, et al., 2013: Assessment of shortwave infrared sea surface reflection and nonlocal thermodynamic equilibrium effects in the community radiative transfer model using IASI data. J. Atmos. Oceanic Technol., 30, 2152–2160, doi: 10.1175/JTECH-D-12-00267.1.
|
Clough, S. A., M. W. Shephard, E. J. Mlawer, et al., 2005: Atmospheric radiative transfer modeling: A summary of the AER codes, short communication. J. Quant. Spectrosc. Radiat. Transf., 91, 233–244, doi: 10.1016/j.jqsrt.2004.05.058.
|
Di, D., J. Li, W. Han, et al., 2018: Enhancing the fast radiative transfer model for FengYun-4 GIIRS by using local training profiles. J. Geophys. Res. Atmos., 123, 12,583–12,596, doi: 10. 1029/2018JD029089.
|
Eyre, J. R., 1991: A fast radiative transfer model for satellite sounding systems. ECMWF Technical Memorandum 176, ECMWF, Reading, 28 pp, doi: 10.21957/xsg8d92y3.
|
Eyre, J. R., W. Bell, J. Cotton, et al., 2022: Assimilation of satellite data in numerical weather prediction. Part II: Recent years. Quart. J. Roy. Meteor. Soc., 148, 521–556, doi: 10.1002/ qj.4228.
|
Jean-Luc, M., G. Uymin, P. Liang, et al., 2015: Fast and accurate radiative transfer in the thermal regime by simultaneous optimal spectral sampling over all channels. J. Atmos. Sci., 72, 2622–2641, doi: 10.1175/JAS-D-14-0190.1.
|
Kan, W. L., P. M. Dong, Z. Q. Zhang, et al., 2020: Development and application of ARMS fast transmittance model for GIIRS data. J. Quant. Spectrosc. Radiat. Transf., 251, 107025, doi: 10.1016/j.jqsrt.2020.107025.
|
Krishnan, P., K. Srinivasa Ramanujam, and C. Balaji, 2012: An artificial neural network based fast radiative transfer model for simulating infrared sounder radiances. J. Earth Syst. Sci., 121, 891–901, doi: 10.1007/s12040-012-0197-3.
|
Le Marshall, J., J. Jung, J. Derber, et al., 2006: Improving global analysis and forecasting with AIRS. Bull. Amer. Meteor. Soc., 87, 891–895, doi: 10.1175/BAMS-87-7-891.
|
Li, J., and W. Han, 2017: A step forward toward effectively using hyperspectral IR sounding information in NWP. Adv. Atmos. Sci., 34, 1263–1264, doi: 10.1007/s00376-017-7167-2.
|
Li, Z. L., W. P. Menzel, J. Jung, et al., 2020: Improving the understanding of CrIS full spectral resolution nonlocal thermodynamic equilibrium radiances using spectral correlation. J. Geophys. Res. Atmos., 125, e2020JD032710., doi: 10.1029/2020JD032710.
|
Liang, H. L, P. Zhang, L. Chen, et al., 2020: A Gradient Boosting Tree method for rapid calculation of level-to-space transmittances. Acta Meteor. Sinica, 78, 853–863, doi: 10.11676/qxxb2020.055. (in Chinese)
|
López-Puertas, M., M. García-Comas, B. Funke, et al., 2004: Evidence for an OH(υ) excitation mechanism of CO2 4.3 μm nighttime emission from SABER/TIMED measurements. J. Geophys. Res. Atmos., 109, D09307, doi: 10.1029/2003JD00 4383.
|
Matricardi, M., 2008: The generation of RTTOV regression coefficients for IASI and AIRS using a new profile training set and a new line-by-line database. ECMWF Technical Memoranda 564, ECMWF, Shinfield Park, Reading, 1–47, doi: 10.21957/59u3oc9es.
|
Matricardi, M., M. López-Puertas, and B. Funke, 2018: Modeling of nonlocal thermodynamic equilibrium effects in the classical and principal component-based version of the RTTOV fast radiative transfer model. J. Geophys. Res. Atmos., 123, 5741–5761, doi: 10.1029/2018JD028657.
|
NOAA/STAR CrIS SDR Team, 2018: Joint Polar Satellite System (JPSS) Cross Track Infrared Sounder (CrIS) Sensor Data Records (SDR) Algorithm Theoretical Basis Document (ATBD) for Normal spectral resolution. Available online at https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-002_JPSS_ATBD_CRIS-SDR_nsr_20180614.pdf. Accessed on 5 March 2024.
|
Weng, F., Y. Han, P. van Delst, et al., 2005: JCSDA community radiative transfer model. 14th Int. TOVS Study Conf., Int. TOVS Working Group, Beijing, China, 217–222. Available online at https://itwg.ssec.wisc.edu/wordpress/wp-content/uploads/2023/05/6_8_Weng_paper_itsc14.pdf. Accessed on 3 March 2024.
|
Weng, F. Z., X. W. Yu, Y. H. Duan, et al., 2020: Advanced Radiative Transfer Modeling System (ARMS): A new-generation satellite observation operator developed for numerical weather prediction and remote sensing applications. Adv. Atmos. Sci., 37, 131–136, doi: 10.1007/s00376-019-9170-2.
|
Zhang, C. M., C. L. Qi, T. H. Yang, et al., 2022: Evaluation of FY-3E/HIRAS-II radiometric calibration accuracy based on OMB analysis. Remote Sens., 14, 3222, doi: 10.3390/rs14133222.
|
Zhang, F., M. W. Zhu, J. N. Li, et al., 2019: Alternate mapping correlated k-distribution method for infrared radiative transfer forward simulation. Remote Sens., 11, 994, doi: 10.3390/rs11090994.
|
Zhang, P., X. Q. Hu, Q. F. Lu, et al., 2022: FY-3E: The first operational meteorological satellite mission in an early morning orbit. Adv. Atmos. Sci., 39, 1–8, doi: 10.1007/s00376-021-1304-7.
|